answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
LiRa [457]
2 years ago
3

Which technological device makes an energy conversion in the same way that a human ear makes an energy conversion?

Physics
1 answer:
liq [111]2 years ago
4 0
I think the answer is C.
You might be interested in
It has been proposed that extending a long conducting wire from a spacecraft (a "tether") could be used for a variety of applica
denis23 [38]

Complete Question

The complete question is shown on the first uploaded image

Answer:

The angle between shuttle's velocity and the Earth's field is  \theta =   24.2^o

Explanation:

From the question we are told that

     The length of eire let out is  L = 250 \ m

      The emf generated is \epsilon = 40 V

      The earth magnetic field is B = 5.0 *10^{-5} T

     The speed of the shuttle and tether is v =  7.80 * 10^3 \  m/s

The emf generated is mathematically represented as

                             \epsilon = L\ v\ B\ sin \ \theta

making \theta  the subject of the formula

                        \theta =   sin ^{-1}[ \frac{\epsilon}{L  * B  *v} ]

substituting values

                        \theta =   sin ^{-1}[ \frac{40}{250  * (5*10^{-5})  *(7.80 *10^{3})} ]

                        \theta =   24.2^o

6 0
2 years ago
For a group class project, students are building model roller coasters. Each roller coaster needs to begin at the top of the fir
abruzzese [7]

Case A :

A .75 kg 65 N/m 1.2 m

m = mass of car = 0.75 kg

k = spring constant of the spring = 65 N/m

h = height of the hill = 1.2 m

x = compression of spring = 0.25 m

Using conservation of energy between Top of hill and Bottom of hill

Total energy at Top of hill = Total energy at Bottom of hill

spring energy + potential energy = kinetic energy

(0.5) k x² + mgh = (0.5) m v²

(0.5) (65) (0.25)² + (0.75 x 9.8 x 1.2) = (0.5) (0.75) v²

v = 5.4 m/s



Case B :

B .60 kg 35 N/m .9 m

m = mass of car = 0.60 kg

k = spring constant of the spring = 35 N/m

h = height of the hill = 0.9 m

x = compression of spring = 0.25 m

Using conservation of energy between Top of hill and Bottom of hill

Total energy at Top of hill = Total energy at Bottom of hill

spring energy + potential energy = kinetic energy

(0.5) k x² + mgh = (0.5) m v²

(0.5) (35) (0.25)² + (0.60 x 9.8 x 0.9) = (0.5) (0.60) v²

v = 4.6 m/s




Case C :

C .55 kg 40 N/m 1.1 m

m = mass of car = 0.55 kg

k = spring constant of the spring = 40 N/m

h = height of the hill = 1.1 m

x = compression of spring = 0.25 m

Using conservation of energy between Top of hill and Bottom of hill

Total energy at Top of hill = Total energy at Bottom of hill

spring energy + potential energy = kinetic energy

(0.5) k x² + mgh = (0.5) m v²

(0.5) (40) (0.25)² + (0.55 x 9.8 x 1.1) = (0.5) (0.55) v²

v = 5.1 m/s




Case D :

D .84 kg 32 N/m .95 m

m = mass of car = 0.84 kg

k = spring constant of the spring = 32 N/m

h = height of the hill = 0.95 m

x = compression of spring = 0.25 m

Using conservation of energy between Top of hill and Bottom of hill

Total energy at Top of hill = Total energy at Bottom of hill

spring energy + potential energy = kinetic energy

(0.5) k x² + mgh = (0.5) m v²

(0.5) (32) (0.25)² + (0.84 x 9.8 x 0.95) = (0.5) (0.84) v²

v = 4.6 m/s


hence closest is in case C at 5.1 m/s




7 0
2 years ago
Read 2 more answers
Bjorn is holding a tennis ball outside a second floor window (3.5 meters from the ground) and billie jean is holding one outside
MArishka [77]
The answer is 1.01 x 10^(-11) N. I arrived to this answer through calculating the GPEs of both balls. Bjorn's ball has a GPE of 1.402 x 10^(-11) N. Billie Jean's ball has a GPE of <span>2.503 x 10^(-11) N. I subtracted the two and I found that Billie Jean's tennis ball has a GPE of 1.01 x 10^(-11) more than Bjorn's tennis ball.</span>
4 0
2 years ago
As a person pushes a box across a floor, the energy from the person’s moving arm is transferred to the box, and the box and the
san4es73 [151]

Answer:

conserved

Explanation:

During this process the energy is conserved

3 0
2 years ago
Read 2 more answers
An aluminum rod and a nickel rod are both 5.00 m long at 20.0 degree Celsius. The temperature of each is raised to 70.0 degrees
vitfil [10]

Answer:

0.002925 m

Explanation:

Lt = LO(1 +α Δt ) here Lt is total length Lo is original length α is coefficient of linear expansion and Δt is change in temperature

<h2>for aluminium</h2>

α=25×10^-6

Lt = 5(1+25×10^-6×(70-20))

Lt = 5 (1+25×10^-6×50)

Lt = 5 ( 1+0.00125)

Lt = 5×1.00125

Lt =5.00625 m

<h2>for nickel </h2>

α=13.3×10^-6

Lt =5(1+13.3×10^-6×50)

Lt = 5(1+0.000665)

Lt =5.003325 m

hence difference in length =5.00625-5.003325

                                           = 0.002925 m

3 0
2 years ago
Other questions:
  • A student measures the speed of a rolling ball three times. She adds the measurements and divides by 3.What quantity did the stu
    5·2 answers
  • What is the freezing point of radiator fluid that is 50% antifreeze by mass? k f for water is 1.86 ∘ c/m?
    7·2 answers
  • High‑speed ultracentrifuges are useful devices to sediment materials quickly or to separate materials. An ultracentrifuge spins
    7·1 answer
  • If 1.00 mol of argon is placed in a 0.500-L container at 28.0 ∘C , what is the difference between the ideal pressure (as predict
    7·1 answer
  • You are wallpapering two walls of a room. One wall measures 15 ft by 12 ft and the other measures 9 ft by 12 ft. The wall paper
    10·1 answer
  • (a) A 15.0 kg block is released from rest at point A in the figure below. The track is frictionless except for the portion betwe
    12·1 answer
  • A 5-kg can of paint is sitting on top of a 2-meter high step ladder. How much work did you do to move the can of paint to the to
    10·1 answer
  • A 65-cm segment of conducting wire carries a current of 0.35 A. The wire is placed in a uniform magnetic field that has a magnit
    13·2 answers
  • 11)A 1100 kg car travels on a straight highway with a speed of 30 m/s. The driver sees a red light ahead and applies her
    5·1 answer
  • Two very small +3.00-μC charges are at the ends of a meter stick. Find the electric potential (relative to infinity) at the cent
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!