Mercury is a heavy, silvery-white liquid metal. Compared to other metals, it is a poor conductor of heat, but a fair conductor of electricity. ... Because this configuration strongly resists removal of an electron, mercury behaves similarly to noble gases, which form weak bonds and hence melt at low temperatures.
Answer: 
Explanation:
The balanced chemical equation :
To calculate the moles, we use the equation:

According to stoichiometry:
4 moles of
produces = 902.0 kJ of energy
415.1 moles of
produces =
of energy
Thus the change in enthalpy is 
Answer:
C)We cannot be sure unless we find out its boiling point.
Explanation:
It is necessary to clearly explain here that simply observing two compounds of the same homologous series irrespective of how close they may be in the series will not give us the faintest idea regarding which one will be a liquid, solid or gas at room temperature.
However, to determine whether an unknown substance will be a liquid at room temperature, then its important to measure its boiling point. If the boiling point is above room temperature, and the melting point is below room temperature, the compound is a liquid. If the boiling point of the unknown substance is below room temperature, it is a gas.
It is now safe to conclude that cannot decide on the state of matter in which a compound exists unless we know something about its boiling point, not merely looking closely at the properties of its neighbouring compounds in the same homologous series
Answer:
0.258 mg of iron remains.
Explanation:
To solve this problem we can use the formula
M₂ = M₀ * 
Where M₂ is the mass remaining, M₀ is the initial mass, and t is time in days.
Using the data given by the problem:
M₂ = 2.000 mg * 
M₂ = 0.258 mg