<span>15.4 milligrams
The ideal gas law is
PV = nRT
where
P = pressure of the gas
V = volume of the gas
n = number of moles of gas
R = Ideal gas constant (8.3144598 L*kPa/(K*mol) )
T = absolute temperature.
So let's determine how many moles of gas has been collected.
Converting temperature from C to K
273.15 + 25 = 298.15 K
Converting pressure from mmHg to kPa
753 mmHg * 0.133322387415 kPa/mmHg = 100.3917577 kPa
Taking idea gas equation and solving for n
PV = nRT
PV/RT = n
n = PV/RT
Substituting known values
n = PV/RT
n = (100.3917577 kPa 0.195 L) / (8.3144598 L*kPa/(K*mol) 298.15 K)
n = (19.57639275 L*kPa) / (2478.956189 L*kPa/(mol) )
n = 0.007897031 mol
So we have a total of 0.007897031 moles of gas particles.
Now let's get rid of that percentage that's water vapor. The percentage of water vapor is the vapor pressure of water divided by the total pressure. So
24/753 = 0.03187251
The portion of hydrogen is 1 minus the portion of water vapor. So
1 - 0.03187251 = 0.96812749
So the number of moles of hydrogen is
0.96812749 * 0.007897031 mol = 0.007645332 mol
Now just multiple the number of moles by the molar mass of hydrogen gas. Start with the atomic weight.
Atomic weight hydrogen = 1.00794
Molar mass H2 = 1.00794 * 2 = 2.01588 g/mol
Mass H2 = 2.01588 g/mol * 0.007645332 mol = 0.015412073 g
Rounding to 3 significant figures gives 0.0154 g = 15.4 mg</span>
The answer is C. It bans the exploitation of mineral resources
Answer:
H₂Lv
Explanation:
Lv is at group 6 on the periodic table, so it has 6 valence electrons, likely oxygen. Thus, to be stable, it needs to gain 2 electrons. Hydrogen has 1 electron in its valence shell, so H₂ can share 2 electrons with Lv, and because of that, the product would be:
H₂Lv.
<h3>
Answer:</h3>
19.3 g/cm³
<h3>
Explanation:</h3>
Density of a substance refers to the mass of the substance per unit volume.
Therefore, Density = Mass ÷ Volume
In this case, we are given;
Mass of the gold bar = 193.0 g
Dimensions of the Gold bar = 5.00 mm by 10.0 cm by 2.0 cm
We are required to get the density of the gold bar
Step 1: Volume of the gold bar
Volume is given by, Length × width × height
Volume = 0.50 cm × 10.0 cm × 2.0 cm
= 10 cm³
Step 2: Density of the gold bar
Density = Mass ÷ volume
Density of the gold bar = 193.0 g ÷ 10 cm³
= 19.3 g/cm³
Thus, the density of the gold bar is 19.3 g/cm³
The element is Am and since you lose e- there must be a postive charge. Am+6 is the symbol