answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nata0808 [166]
1 year ago
5

Dean took out a 10-year loan for $40,000 at an APR of 4% compounded monthly. What will his balance be after he has made exactly

half of his monthly payments
Mathematics
2 answers:
Nastasia [14]1 year ago
5 0

Answer: 21,990.07

Step-by-step explanation: A P E X

damaskus [11]1 year ago
3 0

Answer:

The balance be after he has made exactly half of his monthly payments is $56881.4.

Step-by-step explanation:

Given : Dean took out a 10-year loan for $40,000 at an APR of 4% compounded monthly.

To find : What will his balance be after he has made exactly half of his monthly payments?

Solution :

Formula of monthly payment ,

M=\frac{\text{Amount}}{\text{Discount factor}}  

Discount factor D=\frac{1-(1+i)^{-n}}{i}  

Where, Amount = $40,000

Rate r= 4% compounded monthly

i=\frac{4}{100}=0.04  

Time = 10 years  

n=10\times12=120  

Now, put all the values we get,  

D=\frac{1-(1+i)^{-n}}{i}  

D=\frac{1-(1+0.04)^{-120}}{0.04}  

D=\frac{1-(1.04)^{-120}}{0.04}  

D=\frac{1-0.00903}{0.04}  

D=\frac{0.9909}{0.04}  

D=24.7725  

M=\frac{\text{Amount}}{\text{Discount factor}}  

M=\frac{40000}{24.7725}  

M=1614.69  

Half of the monthly payment is $807.345

Payment for 10 years is 807.345\times 120=96881.4

The balance is $96881.4-$40000=$56881.4

Therefore, The balance be after he has made exactly half of his monthly payments is $56881.4.

You might be interested in
5(0.04y-0.08) >3(0.2y-0.05-0.4y)
MAXImum [283]

0.08(y + -1) + 0.12y = 0.14 + -0.05(10)

Reorder the terms:

0.08(-1 + y) + 0.12y = 0.14 + -0.05(10)

(-1 * 0.08 + y * 0.08) + 0.12y = 0.14 + -0.05(10)

(-0.08 + 0.08y) + 0.12y = 0.14 + -0.05(10)

Combine like terms: 0.08y + 0.12y = 0.2y

-0.08 + 0.2y = 0.14 + -0.05(10)

Multiply -0.05 * 10

-0.08 + 0.2y = 0.14 + -0.5

Combine like terms: 0.14 + -0.5 = -0.36

-0.08 + 0.2y = -0.36

Solving

-0.08 + 0.2y = -0.36

Solving for variable 'y'.

Move all terms containing y to the left, all other terms to the right.

Add '0.08' to each side of the equation.

-0.08 + 0.08 + 0.2y = -0.36 + 0.08

Combine like terms: -0.08 + 0.08 = 0.00

0.00 + 0.2y = -0.36 + 0.08

0.2y = -0.36 + 0.08

Combine like terms: -0.36 + 0.08 = -0.28

0.2y = -0.28

Divide each side by '0.2'.

y = -1.4

Simplifying

y = -1.4

3 0
2 years ago
Unit 3 parallel and perpendicular lines homework 4 parallel line proofs
Alex17521 [72]

Answer:

1) c ║ d by consecutive interior angles theorem

2) m∠3 + m∠6 = 180° by transitive property

3) ∠2 ≅ ∠5 by definition of congruency

4) t ║ v                                    {}                   Corresponding angle theorem

5) ∠14 and ∠11  are supplementary         {}  Definition of supplementary angles

6) ∠8 and ∠9  are supplementary    {}        Consecutive  interior angles theorem

Step-by-step explanation:

1) Statement                                {}                                     Reason

m∠4 + m∠7 = 180°                                 {}   Given

m∠4 ≅ m∠6                                {}              Vertically opposite angles

m∠4 = m∠6                               {}                Definition of congruency

m∠6 + m∠7 = 180°                                {}    Transitive property

m∠6 and m∠7 are supplementary     {}     Definition of supplementary angles

∴ c ║ d                               {}                       Consecutive interior angles theorem

2) Statement                                {}                                     Reason

m∠3 = m∠8                                 {}           Given

m∠8 + m∠6 = 180°                {}                 Sum of angles on a straight line

∴ m∠3 + m∠6 = 180°               {}               Transitive property

3) Statement                                {}                                     Reason

p ║ q                                 {}                    Given

∠1 ≅ ∠5                               {}                  Given

∠1 = ∠5                               {}                   Definition of congruency

∠2 ≅ ∠1                               {}                  Alternate interior angles theorem

∠2 = ∠1                               {}                   Definition of congruency

∠2 = ∠5                                  {}               Transitive property

∠2 ≅ ∠5                                  {}              Definition of congruency.

4) Statement                                {}                                     Reason

∠1 ≅ ∠5                                  {}                Given

∠3 ≅ ∠4                               {}                  Given

∠1 = ∠5                               {}                   Definition of congruency

∠3 = ∠4                               {}                  Definition of congruency

∠5 ≅ ∠4                               {}                 Vertically opposite angles

∠5 = ∠4                               {}                  Definition of congruency

∠5 = ∠3                                  {}               Transitive property

∠1 = ∠3                                  {}                Transitive property

∠1 ≅ ∠3                                  {}                Definition of congruency.

t ║ v                                    {}                   Corresponding angle theorem

5) Statement                                {}                                     Reason

∠5 ≅ ∠16                                  {}              Given

∠2 ≅ ∠4                               {}                  Given

∠5 = ∠16                               {}                  Definition of congruency

∠2 = ∠4                               {}                   Definition of congruency

EF ║ GH                               {}                  Corresponding angle theorem

∠14 ≅ ∠16                               {}                Corresponding angles

∠14 = ∠16                               {}                 Definition of congruency

∠5 = ∠14                                  {}               Transitive property

∠5 + ∠11 = 180°                {}                       Sum of angles on a straight line

∠14 + ∠11 = 180°                                {}      Transitive property

∠14 and ∠11  are supplementary         {}  Definition of supplementary angles  

6) Statement                                {}                                     Reason

l ║ m                                 {}                      Given

∠4 ≅ ∠7                               {}                  Given

∠4 = ∠7                               {}                   Definition of congruency

∠2 ≅ ∠7                               {}                  Alternate angles

∠2 = ∠7                               {}                   Definition of congruency

∠2 = ∠4                                  {}               Transitive property

∠2 ≅ ∠4                               {}                  Definition of congruency

∠2 and ∠4 are corresponding angles   {} Definition

DA ║ EB                               {}                  Corresponding angle theorem

∠8 and ∠9  are consecutive  interior angles    {} Definition

∠8 and ∠9  are supplementary    {}        Consecutive  interior angles theorem.

6 0
2 years ago
What is Question I (if m<EBF = 117°, fine m<ABE)​
Natasha_Volkova [10]

Answer:

m∠ABE = 27°

Step-by-step explanation:

* Lets look to the figure to solve the problem

- AC is a line

- Ray BF intersects the line AC at B

- Ray BF ⊥ line AC

∴ ∠ABF and ∠CBF are right angles

∴ m∠ABF = m∠CBF = 90°

- Rays BE and BD intersect the line AC at B

∵ m∠ABE = m∠DBE ⇒ have same symbol on the figure

∴ BE is the bisector of angle ABD

∵ m∠EBF = 117°

∵ m∠EBF = m∠ABE + m∠ABF

∵ m∠ABF = 90°

∴ 117° = m∠ABE + 90°

- Subtract 90 from both sides

∴ m∠ABE = 27°

4 0
2 years ago
Read 2 more answers
Sam takes a job with a starting salary of $50,000 for the first year. He earns a 4% increase each ear. Which expression gives th
gtnhenbr [62]
Did you ever find out the answer? 
5 0
1 year ago
Which descriptions from the list below accurately describe the relationship between QRS and TUV? Check all that apply.
valentina_108 [34]

Definition: Triangles are congruent when they have  exactly the same three sides and exactly the same three angles.

From the diagram you have that:

  • m\angle Q=m\angle T=50^{\circ}
  • m\angle R=m\angle U=83^{\circ}
  • m\angle S=m\angle V=47^{\circ}
  • QR=TU=22
  • RS=UV=23
  • QS=TV=30

Triangles QRS and TUV have congruent corresponding sides and congruent corresponding angles. This means they are congruent triangles. Congruent triangles always have the same shape and the same size. Also each pair of congruent triangles is a pair of similar triangles with ratio of similarity equal to 1.

Answer: all choices are correct.

4 0
1 year ago
Read 2 more answers
Other questions:
  • Consider a picnic. if you want to buy enough hot dogs and buns without having any left over, you need to balance the number of p
    7·1 answer
  • A ferry traveled 1/6 of the distance between two ports in 3/7 hour. At this rate, what fraction of the distance between the two
    11·1 answer
  • 30 yards of fabric is needed to make 10 dresses.The fabric roll is stamped 1200 inches .How many yards do you have
    6·1 answer
  • All I need is this answer,please help!!
    12·1 answer
  • Alexis has a rectangular piece of red paper that is 4 cm wide its length is twice its width she Glooze a rectangular r Alexis ha
    13·2 answers
  • For what value of x is the equation 22x + 7 = 215 true?
    5·2 answers
  • Josie is training for a race. Pthe radio of the number of minutes she runs to the number of miles she runs is 24 to 3. she plans
    5·1 answer
  • A large department store is curious about what sections of the store make the most sales. The manager has data from ten years pr
    11·1 answer
  • a previous analysis of paper boxes showed that the standard deviation of their lengths is 15 millimeters. A packers wishes to fi
    11·1 answer
  • Chelsea is graphing the function f(x) = 20(One-fourth)x. She begins by plotting the initial value. Which graph represents her fi
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!