Answer:
First look at the number of bricks alone.
Going from 50 bricks to 60 bricks is more work, thus it will require more people. The number of people would be the ratio of the 2. Since the number must be larger, you know the numerator must be the larger of the 2 numbers, so you get 60/50
Next look at the time alone.
Going from 30 minutes to 20 minutes is more work, thus it will require more people. The number of people would be the ratio of the 2. Since the number must be larger, you know the numerator must be the larger of the 2 numbers, so you get 30/20
Now you can just multiply everything.
= 5*60/50*30/20
= 5*6/5*3/2
= 90\10
= 9.
We know that
Half-life is modeled by the formula
An=A0*(0.5)<span>^[t/h)]
where
An----------> </span>is the amount remaining after a time t
A0----------> is the initial quantity
t------------> is the time
h------------> is the half-life of the decaying quantity
in this problem
h=1601 years
A0=50 g
An=?
t=100 years
An=A0*(0.5)^[t/h)]---------> An=50*(0.5)^[100/1601)]-----> 47.88 gr
the answer is 47.88 g
Answer:
The amount of heat required to raise the temperature of liquid water is 9605 kilo joule .
Step-by-step explanation:
Given as :
The mass of liquid water = 50 g
The initial temperature =
= 15°c
The final temperature =
= 100°c
The latent heat of vaporization of water = 2260.0 J/g
Let The amount of heat required to raise temperature = Q Joule
Now, From method
Heat = mass × latent heat × change in temperature
Or, Q = m × s × ΔT
or, Q = m × s × (
-
)
So, Q = 50 g × 2260.0 J/g × ( 100°c - 15°c )
Or, Q = 50 g × 2260.0 J/g × 85°c
∴ Q = 9,605,000 joule
Or, Q = 9,605 × 10³ joule
Or, Q = 9605 kilo joule
Hence The amount of heat required to raise the temperature of liquid water is 9605 kilo joule . Answer
Answer is
<span>g(x) = 2.5x + 25
</span>5 newspapers, 2.5(5) + 25 = 12.5 + 25 = 37.5
20 newspapers, 2.5(20) + 25 = 50 + 25 = 75