solution:
The probability mass function for binomial distribution is,
Where,
X=0,1,2,3,…..; q=1-p
find the probability that (p∧ ≤ 0.06) , substitute the values of sample units (n) , and the probability of nonconformities (p) in the probability mass function of binomial distribution.
Consider x to be the number of non-conformities. It follows a binomial distribution with n being 50 and p being 0.03. That is,
binomial (50,0.02)
Also, the estimate of the true probability is,
p∧ = x/50
The probability mass function for binomial distribution is,
Where,
X=0,1,2,3,…..; q=1-p
The calculation is obtained as
P(p^ ≤ 0.06) = p(x/20 ≤ 0.06)
= 50cx ₓ (0.03)x ₓ (1-0.03)50-x
= (50c0 ₓ (0.03)0 ₓ (1-0.03)50-0 + 50c1(0.03)1 ₓ (1-0.03)50-1 + 50c2 ₓ (0.03)2 ₓ (1-0.03)50-2 +50c3 ₓ (0.03)3 ₓ (1- 0.03)50-3 )
=( ₓ (0.03)0 ₓ (1-0.03)50-0 + ₓ (0.03)1 ₓ (1-0.03)50-1 + ₓ (0.03)2 ₓ (1-0.03)50-2 ₓ (0.03)3 ₓ (1-0.03)50-3 )
Answer:
The student should have divided the discounted amount by the percent. The percent should have been written as a decimal.
Step-by-step explanation:
Answer:
I and II
Step-by-step explanation:
The ordinate is the y element in an ordered pair in a Cartesian coordinate system. The quadrants in which the ordinates are positive should be at quadrants I and II.
Answer:
Step-by-step explanation:
We would set up the hypothesis test. This is a test of a single population mean since we are dealing with mean
For the null hypothesis,
µ = 17
For the alternative hypothesis,
µ < 17
This is a left tailed test.
Since the population standard deviation is not given, the distribution is a student's t.
Since n = 80,
Degrees of freedom, df = n - 1 = 80 - 1 = 79
t = (x - µ)/(s/√n)
Where
x = sample mean = 15.6
µ = population mean = 17
s = samples standard deviation = 4.5
t = (15.6 - 17)/(4.5/√80) = - 2.78
We would determine the p value using the t test calculator. It becomes
p = 0.0034
Since alpha, 0.05 > than the p value, 0.0043, then we would reject the null hypothesis.
The data supports the professor’s claim. The average number of hours per week spent studying for students at her college is less than 17 hours per week.
I'm assuming that this is the complete question.
If f(x) = 3 – 2x and g(x)=1/(x+5), what is the value of (f/g)(8)? a) –169 b) –1 c) 13 d) 104
x = 8
f(x) = 3 -2xf(8) = 3 - 2(8) = 3 - 16 = -13
g(x) = 1/(x+5)g(8) = 1/(8+5) = 1/13
(f/g)(8)f(8)/g(8) = -13/ (1/13) = -13 * 13 = -169 Choice A :)