Answer:
Step-by-step explanation:
Suppose the time required for an auto shop to do a tune-up is normally distributed, we would apply the formula for normal distribution which is expressed as
z = (x - u)/s
Where
x = points scored by students
u = mean time
s = standard deviation
From the information given,
u = 102 minutes
s = 18 minutes
1) We want to find the probability that a tune-up will take more than 2hrs. It is expressed as
P(x > 120 minutes) = 1 - P(x ≤ 120)
For x = 120
z = (120 - 102)/18 = 1
Looking at the normal distribution table, the probability corresponding to the z score is 0.8413
P(x > 120) = 1 - 0.8413 = 0.1587
2) We want to find the probability that a tune-up will take lesser than 66 minutes. It is expressed as
P(x < 66 minutes)
For x = 66
z = (66 - 102)/18 = - 2
Looking at the normal distribution table, the probability corresponding to the z score is 0.02275
P(x < 66 minutes) = 0.02275
This problem can be expressed through the equation:
x+3x+10= 90
To solve it we subtract 10 on both sides
→x+3x=80
Add x and 3x
→4x=80
And divide each side by 4
→x=80/4
→x=20
ANSWER:
20
Answer:

Step-by-step explanation:
Let
x -----> the number of days
y ----> the number of minutes Yuson has left
we know that
The linear equation in slope intercept form is equal to

where
m is the slope
b is the y-coordinate of the y-intercept (initial value)
In this problem we have
The slope is equal to
----> is negative because is a decreasing function
----> initial value
substitute the values

The four options are attached below
<u><em>Answer:</em></u>Second attachment is the correct choice
<u><em>Explanation:</em></u>ASA (angle-side-angle) means that two angles and the included side between them in the first triangle are congruent to the corresponding two angles and the included side between them in the second triangle
<u>Now, let's check the choices:</u><u>First attachment:</u>
It shows that two sides and the included angle between them in the first triangle is congruent to the corresponding two sides and the included angle between them in the second one. This is congruency by SAS. Therefore, this option is
incorrect<u>Second attachment:</u>
It shows that two angles and the included side between them in the first triangle is congruent to the corresponding two sides and the included angle between them in the second triangle. This is congruency by ASA. Therefore, this option is
correct<u>Third attachment:</u>
It shows that the three angles in the first triangle are congruent to the corresponding three angles in the second one. This is not enough to prove congruency. Therefore, this option is
incorrect<u>Fourth attachment:</u>
It shows that the three sides in the first triangle are congruent to the corresponding three sides in the second one. This is congruency by SSS. Therefore, this option is
incorrect.
Based on the above, the second attachment is the only correct one
Hope this helps :)