C=90°, A=75°, b=AC=19, x=AB
Without a figure, we see AC is adjacent to angle A, so
cos A = AC/AB = b/x
x = b/cos A = 10 / cos 75° ≈ 38.637
Answer: 38.6
Answer:
The standard deviation of car age is 2.17 years.
Step-by-step explanation:
The Empirical Rule states that, for a normally distributed random variable:
68% of the measures are within 1 standard deviation of the mean.
95% of the measures are within 2 standard deviation of the mean.
99.7% of the measures are within 3 standard deviations of the mean.
In this problem, we have that:
Mean = 7.5
(a) If 99.7% of the ages are between 1 year and 14 years, what is the standard deviation of car age?
This means that 1 is 3 standard deviations below the mean and 14 is 3 standard deviations above the mean.
So

I want to find 



The standard deviation of car age is 2.17 years.
Answer:

Step-by-step explanation:






Answer:


Step-by-step explanation:
Previous concepts
Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".
The Z-score is "a numerical measurement used in statistics of a value's relationship to the mean (average) of a group of values, measured in terms of standard deviations from the mean".
The central limit theorem states that "if we have a population with mean μ and standard deviation σ and take sufficiently large random samples from the population with replacement, then the distribution of the sample means will be approximately normally distributed. This will hold true regardless of whether the source population is normal or skewed, provided the sample size is sufficiently large".
Solution to the problem
For this case we select a sample of n =100
From the central limit theorem we know that the distribution for the sample mean
is given by:
So then the sample mean would be:

And the standard deviation would be:
