2:10=>3:10, was 1 hour
3:10=> 3:22, were 12 minutes
the play last 1 hour 12 minutes (or 60+12= 72 minutes).
The fourth one because to know if it is a function or not it has to pass the vertical line test the first one when you draw a vertical line some of the lines repeats so does the second and third but the last one when you draw a vertical line it doesn't repeat s that means its a function
<span>D=20+50t
120=20+50t
50t=100
t=2 hours
Domain of t from t=-(2/5)hr to t=2hr. Since they already drove 20 miles.
[-2/5,2]</span>
1. A straight line segment can be drawn joining any two points.
2. Any straight line segment can be extended indefinitely in a straight line.
3. Given any straight line segment, a circle can be drawn having the segment as radius and one endpoint as center.
4. All right angles are congruent.
5. If two lines are drawn which intersect a third in such a way that the sum of the inner angles on one side is less than two right angles, then the two lines inevitably must intersect each other on that side if extended far enough. This postulate is equivalent to what is known as the parallel postulate.
Answer:
A + B + C = π ...... (1)
...........................................................................................................
L.H.S.
= ( cos A + cos B ) + cos C
= { 2 · cos[ ( A+B) / 2 ] · cos [ ( A-B) / 2 ] } + cos C
= { 2 · cos [ (π/2) - (C/2) ] · cos [ (A-B) / 2 ] } + cos C
= { 2 · sin( C/2 ) · cos [ (A-B) / 2 ] } + { 1 - 2 · sin² ( C/2 ) }
= 1 + 2 sin ( C/2 )· { cos [ (A -B) / 2 ] - sin ( C/2 ) }
= 1 + 2 sin ( C/2 )· { cos [ (A-B) / 2 ] - sin [ (π/2) - ( (A+B)/2 ) ] }
= 1 + 2 sin ( C/2 )· { cos [ (A-B) / 2 ] - cos [ (A+B)/ 2 ] }
= 1 + 2 sin ( C/2 )· 2 sin ( A/2 )· sin( B/2 ) ... ... ... (2)
= 1 + 4 sin(A/2) sin(B/2) sin(C/2)
= R.H.S. ............................. Q.E.D.
...........................................................................................................
In step (2), we used the Factorization formula
cos x - cos y = 2 sin [ (x+y)/2 ] · sin [ (y-x)/2 ]
Step-by-step explanation: