Answer:
Step-by-step explanation:
a) Sample statistics are used to estimate population value. Since 48% is a sample proportion, therefore, it is a sample statistic.
b) For 95% confidence level, z* = 1.96.
\hat{p}\pm z^* \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}= 0.61\pm 0.61\sqrt{\frac{0.61(1-0.61)}{1578}}=0.61\pm 0.024 \ or (0.586, 0.634).
We are 95% confident that the true proportion of US residents who think marijuana should be made legal lies between 58.6% and 63.4%.
c)
\\np=1578(0.61)=962.58
\\n(1-p)=1578(1-0.61)=615.42
Since both np and n(1-p), are at least 10, the normal model is a good approximation for these data.
d) As the lower limit of confidence interval is less than 0.5, less than 50% population is also a plausible value of true proportion. This means the statement "Majority of Americans think marijuana should be legalized" is not justified.
7 plus 3 first than plus 2 my strategy is to look at the easier thing to add than add the second one
Because of the vertical angles theorem, BAC becomes 50°. And angle B is 180-(50+30)=100.
If all 3 triangles are similar, the angles of triangle EFG are 30°, 50°, 100°
Answer: 4 songs and 11 games
Step-by-step explanation:
Sorry if I’m wrong!
Answer:
The 95% confidence interval for the proportion of all shoppers during the year whose visit was because of a coupon they'd received in the mail is (0.2016, 0.2694)
Step-by-step explanation:
In a sample with a number n of people surveyed with a probability of a success of
, and a confidence level of
, we have the following confidence interval of proportions.

In which
z is the zscore that has a pvalue of
.
For this problem, we have that:

95% confidence level
So
, z is the value of Z that has a pvalue of
, so
.
The lower limit of this interval is:

The upper limit of this interval is:

The 95% confidence interval for the proportion of all shoppers during the year whose visit was because of a coupon they'd received in the mail is (0.2016, 0.2694)