Answer:

Step-by-step explanation:
The given expresion is;

We apply the product rule of indices;

We apply this property to our expression to get:

Simplify the exponent on the right;

We can't see the options, but I hope this helps!
Asked and answered elsewhere.
brainly.com/question/10474342Your appropriate choice is ...
Yes. When the function f(x) = x3 − 75x + 250 is divided by x + 10, the remainder is zero. Therefore, x + 10 is a factor of f(x) = x3 − 75x + 250.
Answer:
1) The probability that ten students in a class have different birthdays is 0.883.
2) The probability that among ten students in a class, at least two of them share a birthday is 0.002.
Step-by-step explanation:
Given : Assume there are 365 days in a year.
To find : 1) What is the probability that ten students in a class have different birthdays?
2) What is the probability that among ten students in a class, at least two of them share a birthday?
Solution :

Total outcome = 365
1) Probability that ten students in a class have different birthdays is
The first student can have the birthday on any of the 365 days, the second one only 364/365 and so on...

The probability that ten students in a class have different birthdays is 0.883.
2) The probability that among ten students in a class, at least two of them share a birthday
P(2 born on same day) = 1- P( 2 not born on same day)
![\text{P(2 born on same day) }=1-[\frac{365}{365}\times \frac{364}{365}]](https://tex.z-dn.net/?f=%5Ctext%7BP%282%20born%20on%20same%20day%29%20%7D%3D1-%5B%5Cfrac%7B365%7D%7B365%7D%5Ctimes%20%5Cfrac%7B364%7D%7B365%7D%5D)
![\text{P(2 born on same day) }=1-[\frac{364}{365}]](https://tex.z-dn.net/?f=%5Ctext%7BP%282%20born%20on%20same%20day%29%20%7D%3D1-%5B%5Cfrac%7B364%7D%7B365%7D%5D)

The probability that among ten students in a class, at least two of them share a birthday is 0.002.
OK, so this is assuming we are considering that the first three kids to solve ARE NOT in the first day.
So we have 3 kids and it doubles
Day 1 : 6
Day 2 : 12
Day 3 : 24
Day 4 : 48
Day 5 : 96
Day 6 : 192
Day 7: 384
So it should take 7 days or a week to solve all the problems.
The equation:
(3 * 2)^x = 384