Answer:
Here is the continuation to the question ; The buoyant force is the difference between the fluid forces on the top and bottom of the solid. (The weight-density of water is 62.4 pounds per cubic foot.)
Hence, bouyant force is calculated as = 11980.8lb
Step-by-step explanation:
The steps are as shown in the attachment.
Answer:
3.75
Step-by-step explanation:
2.25 divided by 9
= 0.25
then
0.25 * 9
= 3.75
Answer:
Washing cars= 4 hours
Walking dogs= 10 hours
Step-by-step explanation:
You want to start by creating equations. So one thing we know is that he makes $9 an hour washing cars(x) and $8 walking dogs(y).
$9x+$8y=$116
The second Equation is based off of the hours worked. We know that he worked 6 hours more walking the dogs than he did washing cars, so we can take x(being the washing hours) and add 6 to it to equal y (the number of dog hours).
y=x+6
Now You plug what y equals into the first equation to solve for x.
9x+8(x+6)=116 Next distribute the 8 to each term.
9x+8(x)+8(6)=116
9x+8x+48=116 Add the like terms together (9x+8x)
17x+48=116 Subtract the 48 from both sides
-48 -48
17x=68 Now divide by 17 on both sides.
______
17 17
x=4 Finally we can take x and plug it back in to one of the equations in order to solve for y. I'm going to choose the second equation.
y=(4)+6
y=10
Answer:
3rd graph down
Step-by-step explanation:
greens are x and carrots are y in my equations
2x - y >= 3
x + 2y < 4
The first equation is solid and will highlight everything to the right of it because it is a >
the second is dashed and will highlight everything to the left of it because it is a <
the only 2 graphs that show this are 1 and 3
looking at the points you can see that the points for the solid line are both the same so ignore those and go to the dashed lined ones.
on the first graph the points are (0,4)
plugging those into our equation gives us 0 + 2*4 <4
or 8<4 which doesnt make sense making 3 the correct graph
(sorry my answer wasnt posting so i had to start over and make it less detailed, but comment if you need any explanation)