Df/dy=(1350-750)/(2010-2000)
df/dy=60
f(y)=750+60(y-2000) or neatened up a bit...
f(y)=60y-119250 (note: y is the actual year, ie 2005, not year like 2 years from start)
Answer:
Hey!
The average of these amounts is : $183,636.70!
Step-by-step explanation:
To find the average, we have to add all the values up which gives...
= 918,183.50!
And then divide this number by the amount of values you added up...
*918,183.50 divided by 5 gives = $183,636.70*
So your average is $183,636.70!!
HOPE THIS HELPS!!
Answer:

And when we apply the limit we got that:

Step-by-step explanation:
Assuming this complete problem: "The following formula for the sum of the cubes of the first n integers is proved in Appendix E. Use it to evaluate the limit . 1^3+2^3+3^3+...+n^3=[n(n+1)/2]^2"
We have the following formula in order to find the sum of cubes:

We can express this formula like this:
![\lim_{n\to\infty} \sum_{n=1}^{\infty}i^3 =\lim_{n\to\infty} [\frac{n(n+1)}{2}]^2](https://tex.z-dn.net/?f=%20%5Clim_%7Bn%5Cto%5Cinfty%7D%20%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7Di%5E3%20%3D%5Clim_%7Bn%5Cto%5Cinfty%7D%20%5B%5Cfrac%7Bn%28n%2B1%29%7D%7B2%7D%5D%5E2)
And using this property we need to proof that: 1^3+2^3+3^3+...+n^3=[n(n+1)/2]^2
![\lim_{n\to\infty} [\frac{n(n+1)}{2}]^2](https://tex.z-dn.net/?f=%20%5Clim_%7Bn%5Cto%5Cinfty%7D%20%5B%5Cfrac%7Bn%28n%2B1%29%7D%7B2%7D%5D%5E2)
If we operate and we take out the 1/4 as a factor we got this:

We can cancel
and we got

We can reorder the terms like this:

We can do some algebra and we got:

We can solve the square and we got:

And when we apply the limit we got that:

B.addition property of multiplication
D.inverse property of multiplication
E.commutative property of addition
Answer:
26.11% of women in the United States will wear a size 6 or smaller
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:

In the United States, a woman's shoe size of 6 fits feet that are 22.4 centimeters long. What percentage of women in the United States will wear a size 6 or smaller?
This is the pvalue of Z when X = 22.4. So



has a pvalue of 0.2611
26.11% of women in the United States will wear a size 6 or smaller