Answer:
The sample proportion represents a statistically significant difference from 50%
Step-by-step explanation:
Null hypothesis: The sample proportion is the same as 50%
Alternate hypothesis: The sample proportion is not the same as 50%
z = (p' - p) ÷ sqrt[p(1 - p) ÷ n]
p' is sample proportion = 289/400 = 0.7225
p is population proportion = 50% = 0.5
n is number of students sampled = 400
z = (0.7225 - 0.5) ÷ sqrt[0.5(1 - 0.5) ÷ 400] = 0.2225 ÷ 0.025 = 8.9
The test is a two-tailed test. Using a 0.01 significance level, critical value is 2.576. The region of no rejection of the null hypothesis is -2.576 and 2.576.
Conclusion:
Reject the null hypothesis because the test statistic 8.9 falls outside the region bounded by the critical values -2.576 and 2.576.
There is sufficient evidence to conclude that the sample proportion represents a statistically significant difference from 50%.
Answer:
A. y = sine (x + 90 degrees)
Step-by-step explanation:
- y = cosine(x) is a curve that crosses the y-axis at y = 1 and completes one cycle at 360 degrees.
- sine(x) have the same curve than cosine(x), but translated 90° to the right respect cosine(x)
- f(x + c) translates f(x) horizontally c units to the left.
- Then, sine(x + 90) is equivalent to cosine(x)
Answer:
There is no specific linear equation for this scenario because there is only one possible length for the pole.
Step-by-step explanation:
Answer: 0.51
Step-by-step explanation:
This is a conditional probability. The first event is the airplane accident being caused by structural failure. The probability of it being due to structural failure is 0.3 and the probability of it not being due to structural failure is 0.7. The second event involves the diagnosis of the event. If a plane fails due to structural failure, the probability that it will be diagnosed and the results will say it was due to structural failure is 0.85, and the probability that the diagnosis is unable to identify that it was because of a structural failure is 0.15. If the plane were to fail as a result of some other reason aside structural failure, the probability that the diagnosis will show that it was as a result of structural failure is 0.35 and the probability of the diagnosis showing that is is not as a result of structural failure is 0.65. To find the probability that an airplane failed due to structural failure given that it was diagnosed that it failed due to some malfunction, this is the equation;
p = (probability of plane failing and diagnosis reporting that the failure was due to structural failure)/ (probability of diagnosis reporting that failure was due to structural failure)
p = (0.3*0.85)/((0.3*0.85) + (0.7*0.35))
p = 0.51
Answer:
144 gold bars
Step-by-step explanation:
first you fine the area gold bars take up in cubic inches by multiplying the 3, 2, and 6 to get 36
once you have the space 1 gold bar takes up you divide the total space by that the total space is 5184 so you divide 5184 by 36 to get 144