Curl is defined as:

Which can be rewritten as:

This is because C1 lies on the xy plane and thus it's unit vector will be
.
By similar arguments the rest will follow too.
Now, area of each circle will be: 
Therefore, Curl, as per our definition will be:

Thus, Curl=
Which is the required answer.
Answer:


And using a calculator, excel ir the normal standard table we have that:

And we can calculate the probability like this:
Step-by-step explanation:
A random sample of 36 observations has been drawn from a normal distribution with mean 50 and standard deviation 12. Find the probability that the sample mean is in the interval 47<=X<53. Is the assumption of normality important. Why?
Previous concepts
Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".
The Z-score is "a numerical measurement used in statistics of a value's relationship to the mean (average) of a group of values, measured in terms of standard deviations from the mean".
Solution to the problem
Let X the random variable that represent the variable of interest of a population, and for this case we know the distribution for X is given by:
Where
and 
Since the distribution for X is normal then we know that the distribution for the sample mean
is given by:

We can find the probability required like this:


And using a calculator, excel ir the normal standard table we have that:

And we can calculate the probability like this:

Answer:
700.7
Step-by-step explanation:
You're looking for distance. So all you have to do is 18.2 x 28.5 and you'll get your answer.
Hope this helps. :)
100 total people......35 exercise in the morning....45 in the afternoon...and 20 at night
Jim is correct.....
35/100 is the ratio of people who exercise in the morning to total people.
45/100 is the ratio of afternoon exercisers to total people
20/100 is the ratio of night exercisers to total people
solution:
The probability mass function for binomial distribution is,
Where,
X=0,1,2,3,…..; q=1-p
find the probability that (p∧ ≤ 0.06) , substitute the values of sample units (n) , and the probability of nonconformities (p) in the probability mass function of binomial distribution.
Consider x to be the number of non-conformities. It follows a binomial distribution with n being 50 and p being 0.03. That is,
binomial (50,0.02)
Also, the estimate of the true probability is,
p∧ = x/50
The probability mass function for binomial distribution is,
Where,
X=0,1,2,3,…..; q=1-p
The calculation is obtained as
P(p^ ≤ 0.06) = p(x/20 ≤ 0.06)
= 50cx ₓ (0.03)x ₓ (1-0.03)50-x
= (50c0 ₓ (0.03)0 ₓ (1-0.03)50-0 + 50c1(0.03)1 ₓ (1-0.03)50-1 + 50c2 ₓ (0.03)2 ₓ (1-0.03)50-2 +50c3 ₓ (0.03)3 ₓ (1- 0.03)50-3 )
=( ₓ (0.03)0 ₓ (1-0.03)50-0 + ₓ (0.03)1 ₓ (1-0.03)50-1 + ₓ (0.03)2 ₓ (1-0.03)50-2 ₓ (0.03)3 ₓ (1-0.03)50-3 )