8.25 inches once you multiply the 3/4 by 2 and add that and also add the 3/4 from the previous week you’ll get your answer
First, we draw our line.
|------------------------------------------------------------------------------------|
a e
Next, break up this line into segments using the information.
|----------------------|----------------------|--------------------|------------------|
a b c d e
The entire line is 29.
ab + bc + cd + de = ae
ab + bc + cd + de = 29
You also know that
bd = bc + cd
Due to midpoint theorem,
ab = bc
cd = de
Then,
2ab + 2cd = 29
The equations we will use are
bd = bc + cd eq1
2bc + 2cd = 29 eq2
Dividing both sides of the equation in eq2 yields
bc + cd = 14.5
bd = bc + cd
bd = 14.5
Answer:
Definition of bisector
Angle addition postulate
same side interior angles theorem
subtraction property of equality
Step-by-step explanation:
It is given that m║n, m∠1 = 65°,m∠2=60° and BD --> bisects ∠ABC . Because of triangle sum theorem, m∠3 = 55°. By the definition of bisector , ∠3 ≅∠4, so m∠4= 55°. Using the angle addition postulate , m∠ABC = 110°, m∠5 = 110° because vertical angles are congruent . Because of same side interior angles theorem, m∠5 +m∠6 = 180°. Substituting gives 110°+ m∠6 =180°, so by the subtraction property of equality , m∠6 = 70°.
Answer:
![4x^5\sqrt[3]{3x}](https://tex.z-dn.net/?f=%204x%5E5%5Csqrt%5B3%5D%7B3x%7D%20)
Step-by-step explanation:
I'm not sure I understand the problem, but I think it's this:
![\sqrt[3]{16x^7} \times \sqrt[3]{12x^9} =](https://tex.z-dn.net/?f=%20%5Csqrt%5B3%5D%7B16x%5E7%7D%20%5Ctimes%20%5Csqrt%5B3%5D%7B12x%5E9%7D%20%3D%20)
![= \sqrt[3]{16 \times 12 \times x^{16}}](https://tex.z-dn.net/?f=%3D%20%5Csqrt%5B3%5D%7B16%20%5Ctimes%2012%20%5Ctimes%20x%5E%7B16%7D%7D)
![= \sqrt[3]{192 \times x^{15} \times x}](https://tex.z-dn.net/?f=%3D%20%5Csqrt%5B3%5D%7B192%20%5Ctimes%20x%5E%7B15%7D%20%5Ctimes%20x%7D)
![= \sqrt[3]{64 \times 3 \times (x^5)^3 \times x}](https://tex.z-dn.net/?f=%20%3D%20%5Csqrt%5B3%5D%7B64%20%5Ctimes%203%20%5Ctimes%20%28x%5E5%29%5E3%20%5Ctimes%20x%7D%20)
![= \sqrt[3]{4^3 \times 3 \times (x^5)^3 \times x}](https://tex.z-dn.net/?f=%20%3D%20%5Csqrt%5B3%5D%7B4%5E3%20%5Ctimes%203%20%5Ctimes%20%28x%5E5%29%5E3%20%5Ctimes%20x%7D%20)
![= 4x^5\sqrt[3]{3x}](https://tex.z-dn.net/?f=%20%3D%204x%5E5%5Csqrt%5B3%5D%7B3x%7D%20)