1. x= 11.7 μ = 7
2. z11.7= 1.3
3. Is 11.7 within a z-score of 3?
a. Yes because z11.7 < 3.
4. Which statement is true of z11.7?
b. z11.7 is between 1 and 2 standard deviations of the mean.
Answer:
10*10=100
50*2=100
5*20-100
Step-by-step explanation:
Answer:
atleast 52
Step-by-step explanation:
Given that an employment agency requires applicants average at least 70% on a battery of four job skills tests.
An applicant scored 70%, 77%, and 81% on the first three exams,
Since weightages are not given we can assume all exams have equal weights
Let x be the score on the 4th test
Then total of all 4 exams = 
Average should exceed 70%
i.e.
Comparing the two totals we have

Hemust score on the fourth test a score atleast 52 to maintain a 70% or better average.
This is an isosceles right triangle (AB = BC & ∠ B=90° - Given)
Then the angles at the base are equal and ∠ CAB = ∠ ACB = 45°
Theorem: Segment DE, joining the midpoints of 2 sides is:
1st) parallel to the 3rd side and
2nd) equal to half the measurement of the 3rd side
So if the 3rd side (hypotenuse) = 9 units, DE = 9/2 = 4.5 units
The mean is just the arithmetic average...
Sample A=8.1
Sample B=8.11
Both Samples=8.105
So Ryan would be closer to being correct given either of or both samples.