Define unit vectors along the x-axis and the y-axis as

respectively.
Then the vector from P to Q is

In component form, the vector PQ is (-8,5).
The magnitude of vector PQ is
√[(-8)² + 5²] = √(89) = 9.434
Answer:
The vector PQ is (-8, 5) and its magnitude is √89 (or 9.434).
Answer:
End fraction right brace
Step-by-step explanation:
I really hope I helped GL <33!
The sum of the exterior angles is the same as the sum of the interior angles.
<span>Sum of Interior Angles = (Number of Sides -2) • 180 degrees
</span><span>Sum of Interior Angles = (7-2) * 180 = 900 Degrees
Source:
http://www.1728.org/polygon.htm
</span>
Answer:
$9.90 per hour
Step-by-step explanation:
This month:
Initial pay: $10 per hour
% raise : 10%
Dollar amount of raise = 10% x $10
= 10/100 x 10 = $1
Gina's pay after the raise = $10 + $1 = $11 per hour
Next Month:
Starting pay: $11 per hour
% decrease : 10%
Dollar amount of decrease = 10% x $11
= 10/100 x 11 = $1.10
Gina's pay after decrease = $11 - 1.10 = $9.90 per hour
<span>1)Given: AB = 4 AD = 6
What is the name of the radius of the larger circle?
the answer part 1) is
the radius </span>of the larger circle is AD
<span>2)Given: AB = 4 AD = 6
What point is in the interior of both circles?
the answer Part 2) is
The point A (the center of the circles)
</span><span>3) Given: AB = 4 AD = 6
Which points are in the exterior of both circles?</span><span>
the answer Part 3) is
</span><span>E and G
</span><span>4)The circles are _____.
</span><span>the answer Part 4) is
</span><span>concentric
</span>
<span>5)If AC = 20 and BD = 8, what is the radius of the smaller circle?
</span>we know that
radius smaller circle=AB
and
AB=AC-BD--------> AC=20-12-------> AC=8 units
the answer part 5) is
the radius of the smaller circle is 12 units
<span>6)Given: AB = 4 AD= 6
What is the length of BD?</span>
we know that
AD=AB+BD
solve for BD
BD=AD-AB--------> BD=6-4-----> BD=2 units
the answer Part 6) is
the length of BD is 2
<span>7)Given: AB = 4 AD = 6
What is the name of the radius of the smaller circle?</span>
the answer Part 7) is
the name of the radius of the smaller circle is AB