Answer:
Your answer would be 14,880, so it would be greater than 12,400.
12,400 * 1 1/5 = 14,880
Answer:
q(p)= -3000p+12000
Step-by-step explanation:
For the function to be linear,
q(p)= mp + c
where
q(p): number of hamburgers sold
p: price per hamburger
m: gradient of the function
c: constant of the function
q(p)=6000 when p=2
6000=2m+c .................... equation I
0=4m+c
c=-4m........................ equation II
Substitute value of c in equation I
6000=2m-4m
m= -3000
c=12000
q(p)= -3000p+12000
Let p(x) be a polynomial, and suppose that a is any real
number. Prove that
lim x→a p(x) = p(a) .
Solution. Notice that
2(−1)4 − 3(−1)3 − 4(−1)2 − (−1) − 1 = 1 .
So x − (−1) must divide 2x^4 − 3x^3 − 4x^2 − x − 2. Do polynomial
long division to get 2x^4 − 3x^3 − 4x^2 – x – 2 / (x − (−1)) = 2x^3 − 5x^2 + x –
2.
Let ε > 0. Set δ = min{ ε/40 , 1}. Let x be a real number
such that 0 < |x−(−1)| < δ. Then |x + 1| < ε/40 . Also, |x + 1| <
1, so −2 < x < 0. In particular |x| < 2. So
|2x^3 − 5x^2 + x − 2| ≤ |2x^3 | + | − 5x^2 | + |x| + | − 2|
= 2|x|^3 + 5|x|^2 + |x| + 2
< 2(2)^3 + 5(2)^2 + (2) + 2
= 40
Thus, |2x^4 − 3x^3 − 4x^2 − x − 2| = |x + 1| · |2x^3 − 5x^2
+ x − 2| < ε/40 · 40 = ε.
Answer: A,C,E
Step-by-step explanation:
I took the test and got it right
Answer:
linear function, f(x)=-3x+15
Step-by-step explanation:
its ez