We will use the law of cosines
<span>side a² = b² + c² -2bc • cos(A)
</span><span>side a² = 729 + 196 -2*27*14 * cos (46)
</span><span>side a² = 925 -(756 * 0.69466)
</span>side a² = <span><span>399.83704
</span>
side a = </span><span><span><span>19.995925585
</span>
</span>
</span>
We could round that to 20
a = 20 b = 27 c =14
We can calculate a triangle's area when we know all 3 sides by using Heron's Formula
<span>area = square root (s • (s - a) • (s - b) • (s - c))
where s is the semi-perimeter </span>
semi-perimeter<span> = (side a + side b + side c) ÷ 2</span>
s = (20 + 27 + 14) / 2
s = 30.5
Now we use Heron's Formula
area = square root (s • (s - a) • (s - b) • (s - c))
area = square root (30.5 • (<span>30.5 - 20) • (</span><span>30.5 - 27) • (</span><span>30.5 - 14))</span>
area = square root (30.5 • (10.5) • (3.5) • (<span>16.5))</span>
<span>area = square root (18494.4375)
</span>
<span><span><span>area = 135.9942553934
</span>
</span>
</span>which rounds to
136 square feet
Source:
http://www.1728.org/triang.htm
Step-by-step explanation:
Exponential Functions:
y=ab^x
y=ab
x
a=\text{starting value = }1600
a=starting value = 1600
r=\text{rate = }5.25\% = 0.0525
r=rate = 5.25%=0.0525
\text{Exponential Growth:}
Exponential Growth:
b=1+r=1+0.0525=1.0525
b=1+r=1+0.0525=1.0525
\text{Write Exponential Function:}
Write Exponential Function:
y=1600(1.0525)^x
y=1600(1.0525)
x
Put it all together
\text{Plug in time for x:}
Plug in time for x:
y=1600(1.0525)^{25}
y=1600(1.0525)
25
y= 5750.0628984
y=5750.0628984
Evaluate
y\approx 5750.06
y≈5750.06
Answer:
Option B
Step-by-step explanation:
Options for the given question -
A.
A histogram
B.
A cumulative frequency table
C.
A pie chart
D.
A frequency polygon
Solution
Option B is correct
The data represents the frequency value for a given interval and hence it represents the cumulative form of frequency distribution.