The average cost of streaming N movies will be
.. average cost = (total cost)/(number of movies)
.. = (50 +5N)/N
.. = (50/N) +5
You want this value to be 7, so you have
.. 7 = (50/N) +5
.. 2 = 50/N
.. N = 50/2 = 25
25 movies must be streamed to get the average cost down to $7.
Answer:
Step-by-step explanation:
xy = 2y + xy = 0
Hence, 2y + xy = 0 ---------(1)
Differentiating equation (1) n times by Leibnitz theorem, gives:
2y(n) + xy(n) + ny(n - 1) = 0
Let x = 0: 2y(n) + ny(n - 1) = 0
2y(n) = -ny(n - 1)
∴ y(n) = -ny(n - 1)/2 for n ≥ 1
For n = 1: y = 0
For n = 2: y(1) = -y
For n = 3: -3y(2)/2
For n = 4: -2y(3)
That's a lot of money and words. I don't appreciate this. I would probably just break down and cry tbh
Quadrant III is bottom lefft aka, x and y are both negative
so the answer is A
Answer:
The correct option is (A) $304.47.
Step-by-step explanation:
The formula to compute the future value (<em>FV</em>) of an amount (A), compounded daily at an interest rate of <em>r</em>%, for a period of <em>n</em> years is:
![FV=A\times [1+\frac{r\%}{365}]^{n\times 365}](https://tex.z-dn.net/?f=FV%3DA%5Ctimes%20%5B1%2B%5Cfrac%7Br%5C%25%7D%7B365%7D%5D%5E%7Bn%5Ctimes%20365%7D)
The information provided is:
A = $300
r% = 1.48%
n = 1 year
Compute the future value as follows:
![FV=A\times [1+\frac{r\%}{365}]^{n\times 365}](https://tex.z-dn.net/?f=FV%3DA%5Ctimes%20%5B1%2B%5Cfrac%7Br%5C%25%7D%7B365%7D%5D%5E%7Bn%5Ctimes%20365%7D)
![=300\times [1+\frac{0.0148}{365}]^{365}\\\\=300\times (1.00004055)^{365}\\\\=300\times 1.014911\\\\=304.4733\\\\\approx \$304.47](https://tex.z-dn.net/?f=%3D300%5Ctimes%20%5B1%2B%5Cfrac%7B0.0148%7D%7B365%7D%5D%5E%7B365%7D%5C%5C%5C%5C%3D300%5Ctimes%20%281.00004055%29%5E%7B365%7D%5C%5C%5C%5C%3D300%5Ctimes%201.014911%5C%5C%5C%5C%3D304.4733%5C%5C%5C%5C%5Capprox%20%5C%24304.47)
Thus, the balance after 1 year is $304.47.
The correct option is (A).