Answer:
Explanation:
NADH and FADH2 are both electron carriers of the electron transport chain. NADH gives up its electrons starting from Complex I, which has a higher energy level compared to other complexes. Energy is given off to pump protons across the membrane by the time electrons are transferred to ComplexIII. More electrons are pumped across the membrane as electrons move to Complex IV. Because NADH commenced giving up its electrons from Complex I (higher energy level complex), more protons are pumped across the membrane gradient, which enables ATP synthase with more power to produce 3ATP molecules per NADH molecule.
On the other hand, 2 molecules of ATP are generated by FADH2 because it starts by giving up its electrons to ComplexII. It missed a chance to pump protons across the membrane when it passed Complex I. By the time the electrons reach Complex IV, less protons have been pumped. The lesser the protons to power ATP synthase, the lesser the ATP molecules produced.
Less triiodothyronine (T3) and thyroxine (T4) hormones are made. ... The follicle cells of the thyroid gland produce thyroid hormones while the parafollicular cells produce parathyroid hormone (PTH)
Hi,
Answer: The Liver
<u>My work:</u> Carbohydrates are usually located and converted in the Liver.
<u><em>Extra Information:</em></u> The body uses Carbohydrates as glucose. From there glucose can be converted to glycogen.
<u><em>Words you might not know:</em></u>
1) Converted - To change.
2) Glucose - Energy source.
3) Glycogen - Stores Carbohydrates
I Hope I Helped!
<em>~KingJupiter</em>
Answer:
Explanation:
Membrane bound organelles and eukaryotic
The interaction between two polar molecules would involve HYDROGEN BONDS.
Polar molecules are molecules that have both positive and negative charges as a result of the differences in the electronegativity of the atoms that made up the molecule. Polar molecules interact through dipole dipole inter molecular forces and hydrogen bonds.