Answer:
a) 0.9
b) Mean = 1.58
Standard Deviation = 0.89
Step-by-step explanation:
We are given the following in the question:
A marketing firm is considering making up to three new hires.
Let X be the variable describing the number of hiring in the company.
Thus, x can take values 0,1 ,2 and 3.

a) P(firm will make at least one hire)

Also,


b) expected value and the standard deviation of the number of hires.
![E(x^2) = \displaystyle\sum x_i^2P(x_i)\\=0(0.1) + 1(0.4) + 4(0.32) +9(0.18) = 3.3\\V(x) = E(x^2)-[E(x)]^2 = 3.3-(1.58)^2 = 0.80\\\text{Standard Deviation} = \sqrt{V(x)} = \sqrt{0.8036} = 0.89](https://tex.z-dn.net/?f=E%28x%5E2%29%20%3D%20%5Cdisplaystyle%5Csum%20x_i%5E2P%28x_i%29%5C%5C%3D0%280.1%29%20%2B%201%280.4%29%20%2B%204%280.32%29%20%2B9%280.18%29%20%3D%203.3%5C%5CV%28x%29%20%3D%20E%28x%5E2%29-%5BE%28x%29%5D%5E2%20%3D%203.3-%281.58%29%5E2%20%3D%200.80%5C%5C%5Ctext%7BStandard%20Deviation%7D%20%3D%20%5Csqrt%7BV%28x%29%7D%20%3D%20%5Csqrt%7B0.8036%7D%20%3D%200.89)
There are different definitions of "whole numbers".
Some define it as an integer (i.e. positive or negative) [some dictionaries]
Some define it as a non-negative integer. [most math definitions]
We will take the math definition, i.e. 0<= whole number < ∞
To find pairs (i.e. two) whole numbers with a sum of 110, we start with
0+110=110
1+109=110
2+108=110
...
54+56=110
55+55=110
Since the next one, 56+54=110 is the same pair (54,56) as 54+56=110, we stop at 55+55=110 for a total of 56 pairs.
Answer:
100 in²
Step-by-step explanation:
The area of the banner is equal to the area of the initial rectangle minus the area of the cutout triangle.
The rectangle has a height of 8 inches and width of 14 inches, so its area is:
A = (8 in) (14 in) = 112 in²
The triangle has a base of 8 inches and a height of 3 inches, so its area is:
A = ½ (8 in) (3 in) = 12 in²
So the area of the banner is 112 in² − 12 in² = 100 in².
Keywords:
<em>Divide, polynomial, quotient, divisor, dividend, rest
</em>
For this case, we must find the quotient by dividing the polynomial
. We must build a quotient that, when multiplied by the divisor, eliminates the terms of the dividend until it reaches the rest, as shown in the attached figure. At the end of the division, to verify we must bear in mind that:

Answer:
See attached image