solution:
The probability mass function for binomial distribution is,
Where,
X=0,1,2,3,…..; q=1-p
find the probability that (p∧ ≤ 0.06) , substitute the values of sample units (n) , and the probability of nonconformities (p) in the probability mass function of binomial distribution.
Consider x to be the number of non-conformities. It follows a binomial distribution with n being 50 and p being 0.03. That is,
binomial (50,0.02)
Also, the estimate of the true probability is,
p∧ = x/50
The probability mass function for binomial distribution is,
Where,
X=0,1,2,3,…..; q=1-p
The calculation is obtained as
P(p^ ≤ 0.06) = p(x/20 ≤ 0.06)
= 50cx ₓ (0.03)x ₓ (1-0.03)50-x
= (50c0 ₓ (0.03)0 ₓ (1-0.03)50-0 + 50c1(0.03)1 ₓ (1-0.03)50-1 + 50c2 ₓ (0.03)2 ₓ (1-0.03)50-2 +50c3 ₓ (0.03)3 ₓ (1- 0.03)50-3 )
=( ₓ (0.03)0 ₓ (1-0.03)50-0 + ₓ (0.03)1 ₓ (1-0.03)50-1 + ₓ (0.03)2 ₓ (1-0.03)50-2 ₓ (0.03)3 ₓ (1-0.03)50-3 )
Answer:
A.)359.2, B.)2.5 uf
Step-by-step explanation:
E / I = R
208 / 1.04 = 200 ohms
2*pi*f*L = Xl
6.28*400*.143 = 359.2 ohm
1 / (2*pi*f*Xc) = c
1 /(6.28*400*159.2) = 2.5 uf
Clod would get 11, because the number they both thought of was 63
Answer: The answer is (C).
Step-by-step explanation: The given statement is - "Two matrices are row equivalent if they have the same number of rows". We are to explain whether the statement is true or false.
What are row equivalent matrices? The answer to this question is -
Two matrices are said to be row equivalent if one of the matrices can be obtained from the other by applying a number of elementary row operations. Or, we can say two matrices of same order are row equivalent if they have same row space.
Thus, the correct option is (C).