Answer:
d. a=−k/mx
Explanation:
To know what is the correct expression for the acceleration you take into account the second Newton law, that is:
( 1 )
next, you equal the expression ( 1 ) to the force in a mass-string system, that is F=-kx.

hence, the acceleration is:
d. a=−kmx
Archimedes principle states
that
F1 / A1 = F2 / A2
F2 = (A2 / A1) * F1
Also, formula for the force is
F = mg. Formula for the area of the cylinder is A = πr^2, therefore we get
F2 = (πr2^2 / πr1^2) * mg
Since the diameter of the
cylinders are 2 cm and 24 cm, r1 = 12 and r2 = 1.
Substituting the values to the
derived equation, we get
F2 = (π 1^2 / π 12^2) * 2400 * 9.8
F2 = 163.3333 N
<span> </span>
Answer:

Explanation:
According to Newton's first law:

The component of the force on the y-axis can be obtained through the Pythagorean Theorem. This is because the components are the cathetus of a right triangle and its hypotenuse is the magnitude of the force:

Replacing and solving for N:

Answer:
C) True. S increases with time, v₁ = gt and v₂ = g (t-t₀) we see that for the same t v₁> v₂
Explanation:
You have several statements and we must select which ones are correct. The best way to do this is to raise the problem.
Let's use the vertical launch equation. The positive sign because they indicate that the felt downward is taken as an opponent.
Stone 1
y₁ = v₀₁ t + ½ g t²
y₁ = 0 + ½ g t²
Rock2
It comes out a little later, let's say a second later, we can use the same stopwatch
t ’= (t-t₀)
y₂ = v₀₂ t ’+ ½ g t’²
y₂ = 0 + ½ g (t-t₀)²
y₂ = + ½ g (t-t₀)²
Let's calculate the distance between the two rocks, it should be clear that this equation is valid only for t> = to
S = y₁ -y₂
S = ½ g t²– ½ g (t-t₀)²
S = ½ g [t² - (t²- 2 t to + to²)]
S = ½ g (2 t t₀ - t₀²)
S = ½ g t₀ (2 t -t₀)
This is the separation of the two bodies as time passes, the amount outside the Parentheses is constant.
For t <to. The rock y has not left and the distance increases
For t> = to. the ratio (2t/to-1)> 1 therefore the distance increases as time
passes
Now we can analyze the different statements
A) false. The difference in height increases over time
B) False S increases
C) Certain s increases with time, v₁ = gt and V₂ = g (t-t₀) we see that for the same t v₁> v₂
Initial volume of mercury is
V = 0.1 cm³
The temperature rise is 35 - 5 = 30 ⁰C = 30 ⁰K.
Because the coefficient of volume expansion is 1.8x10⁻⁴ 1/K, the change in volume of the mercury is
ΔV = (1.8x10⁻⁴ 1/K)*(30 ⁰K)(0.1 cm³) = 5.4x10⁻⁴ cm³
The cross sectional area of the tube is
A = 0.012 mm² = (0.012x10⁻² cm²).
Therefore the rise of mercury in the tube is
h = ΔV/A
= (5.4x10⁻⁴ cm³)/(0.012x10⁻² cm²)
= 4.5 cm
Answer: 4.5 cm