I believe the answer would be the second option. The equations given above when graph would intersect only once with each other. They intersect at only point (0,6/5). These are the values of x and y that will agree to the equation. Two equations in a set will always intersect at only one point.
Answer:
Use a graphing calculator.
Step-by-step explanation:
Graph:
f(x) = -4√x
Answer:
The score of 271.2 on a test for which xbar = 240 and s = 24 has a higher relative position than a score of 63.6 on a test for which xbar = 60 and s = 6.
Step-by-step explanation:
Standardized score, z = (x - xbar)/s
xbar = mean, s = standard deviation.
For the first test, x = 271.2, xbar = 240, s = 24
z = (271.2 - 240)/24 = 1.3
For the second test, x = 63.6, xbar = 60, s = 6
z = (63.6 - 60)/6 = 0.6
The standardized score for the first test is more than double of the second test, hence, the score from the first test has the higher relative position.
Hope this Helps!!!
Answer:
Step-by-step explanation:
c !!
Answer: The coordinates of point C after the dilation are (-2, 5)
Step-by-step explanation:
I guess that you want to find where the point C ends after the dilation.
Ok, if we have a point (x, y) and we do a dilation with a scale A around the point (a,b), then the dilated point will be:
(a + A*(x - a), b + A*(y - b))
In this case we have:
(a,b) = (2,1) and A = 3.
And the coordinates of point C, before being dilated, are: (1, 2)
Then the new location of the point C will be:
C' = (1 + 3*(1 - 2), 2 + 3*(2 - 1)) = (1 -3, 2 + 3) = (-2, 5)