Answer:
It destroy both harmful and beneficial microbes.
Explanation:
If scientist added a chemical to destroy the arctic microbes, the beneficial as well as harmful microbes also eliminated from that area where chemical is applied. The removal of harmful microbes is a good thing but the removal of beneficial microbes brings instability in the environment. These beneficial microbes helps in the recycling of nutrients for the plants present there. So the negative effect of chemical is that it also effect the beneficial microbes which are necessary for the ecosystem.
I think it should go:
1)Dissolved minerals
completely cement
the sediment together.
2)The sediment is
gradually buried
and compacted.
3)The sediment is
deposited by wind,
flowing water, or
other natural
processes.
i hope it’s correct and i helped :)!
Answer:
a) The response indicates that a pH below or above this range will most likely cause enolase to denature/change its shape and be less efficient or unable to catalyze the reaction.
b)The response indicates that the appropriate negative control is to measure the reaction rate (at the varying substrate concentrations) without any enzyme present.
c)The response indicated that the enolase has a more stable/functional/correct/normal protein structure at the higher temperature of 55°C than at 37°C because the enzyme is from an organism that is adapted to growth at 55°C.
Explanation:
Enolase catalyzes the conversion of 2-phosphoglycerate to phosphoenolpyruvate during both glycolysis and gluconeogenesis.In bacteria, enolases are highly conserved enzymes and commonly exist as homodimers.
The temperature optimum for enolase catalysis was 80°C, close to the measured thermal stability of the protein which was determined to be 75°C, while the pH optimum for enzyme activity was 6.5. The specific activities of purified enolase determined at 25 and 80°C were 147 and 300 U mg−1 of protein, respectively. Km values for the 2-phosphoglycerate/phosphoenolpyruvate reaction determined at 25 and 80°C were 0.16 and 0.03 mM, respectively. The Km values for Mg2+ binding at these temperatures were 2.5 and 1.9 mM, respectively.
Enolase-1 from Chloroflexus aurantiacus (EnoCa), a thermophilic green non-sulfur bacterium that grows photosynthetically under anaerobic conditions. The biochemical and structural properties of enolase from C. aurantiacus are consistent with this being thermally adapted.
All of them but fungi can BUT not all baceria can some do so all But fungi.
The answer is letter A. According to the principal of dominance, if a recessive gene for tallness is paired with another recessive gene for tallness, the organism will be tall.<span>
By principle, any of two recessive genes will form the characteristic it holds. Dominant genes however only require one to for a trait.
</span>
Thank you for posting your question. I hope you found what you were after. Please feel free to ask me more.
<span> </span>