answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
LekaFEV [45]
2 years ago
4

A projectile is shot into the air following the path, h(x) = -3x^2 + 30x + 300. At what time, value of x, will it reach a maximu

m height?
x = 1
x = 2
x = 4
x = 5
Mathematics
1 answer:
Goshia [24]2 years ago
4 0

Answer:

maximum at x=5

Step-by-step explanation:

This path is parabolic (represented by a parabola since it is given by a quadratic expression).The parabola has the branches down since its leading coefficient is negative (-3), so the maximum value of this function will correspond to the vertex of the parabola.

We can use the definition for the vertex of a parabola to find it.

For a general parabola of the form: y(x)=ax^2+bx+c,

the x-value of its vertex is given by the expression: x_{vertex} =-\frac{b}{2a}

In our case, (since a= -3,  and b= 30) it becomes:

x_{vertex} =-\frac{30}{2*(-3)}=\frac{30}{6} =5

Therefore, the projectile will reach its maximum at x=5

You might be interested in
The rate traveled from Amarillo to Austin by a bus averages 65 miles per hour. The bus arrived in Austin after eight hours of tr
Kobotan [32]
If it takes 8 hours for a bus with an average velocity of 65mph to travel from Amarillo to Austin then,
d = 65 (8) = 520 miles

The distance from Amarillo to Austin (or vice versa) is 520 miles.

If the function to get the distance traveled by the automobile is given by:
d(x) = 80 t
Then, the inverse variation relationship would be
d-1(x) = t = d / 80
Since d = 520
t = 520 / 80
t = 6.5 hours

It takes 6.5 hours for the automobile to complete the trip
4 0
2 years ago
you have housing and fixed expenses of $631.72/month and they are 33% of your realized income. What is our realized income per m
nikklg [1K]
631.72 = 33% of Realized Income 
<span>631.72 / .33 = Realized Income </span>
<span>1914.30 = Realized Income</span>
6 0
2 years ago
Read 2 more answers
Fiona has a play yard for her dog. She mows the yard in 8 equal rows. Each row has 41.75 square feet.
Georgia [21]

Answer: the answer that actually makes since is multiply 8 times 41.75 that also equals out to 334 which would be accurate

Step-by-step explanation:

7 0
2 years ago
Read 2 more answers
In the rectangular prism below, the length of MR is 8 inches, the length of RS is 9 inches, and the length of ST is 12 inches.
Sever21 [200]
Unfortunately, there's no diagram here!  But the prism is described as "rectangular."  Thus, the volume is simply (length)(width)(height) cubic inches.  Multiply: (8 inches)(9 inches)(12 inches).
4 0
2 years ago
Read 2 more answers
Imaginá que tenés 125 dados cúbicos del mismo tamaño ¿Cuantos dados de altura tiene el cubo de mayor tamaño que podés armar apil
kumpel [21]

Answer:

(i) Debemos apilar 5 dados para construir el cubo de mayor tamaño.

(ii) Se necesita 121 dados cuadrados para formar el cuadrado con la mayor cantidad de dados posibles, quedando 4 dados sobrantes.

Step-by-step explanation:

(i) Sabemos por la Geometría Euclídea del Espacio que un cubo es un sólido regular con 6 caras cuadradas y longitudes iguales. Cada dado tiene un volumen de 1 dado cúbico y 125 dados dan un volumen total de 125 dados cúbicos.

El volumen de un cubo está dado por la siguiente fórmula:

V = L^{3}

Donde:

L - Longitud de la arista, medida en dados.

V - Volumen del cubo, medido en dados cúbicos.

Ahora, necesitamos despejar la longitud de la arista para calcular la altura máxima posible:

L = \sqrt[3]{V}

Dado que V = 125\,dados^{3}, encontramos que la altura del cubo de mayor tamaño sería:

L =\sqrt[3]{125\,dados^{3}}

L = 5\,dados

Debemos apilar 5 dados para construir el cubo de mayor tamaño.

(ii) El área cuadrada formada por cubos está determinada por la siguiente fórmula:

A = L^{2}

Donde:

L - Longitud de arista, medida en dados.

A - Área, medida en dados cuadrados.

Puesto que la longitud de arista se basa en un conjunto discreto, esto es, el número de dados disponibles, debemos encontrar el valor máximo de L tal que no supere 125 y de un área entera. Es decir:

L \leq 125\,dados

Si cada cubo tiene un área de 1 dado cuadrado, entonces un cuadrado conformado por 125 dados tiene un área total de 125 dados cuadrados. Entonces:

L^{2}< 125\,dados^{2}

Esto nos lleva a decir que:

L < 11.180\,dados

Entonces, la longitud máxima del cuadrado con la mayor cantidad de cubos posible es de 11 dados. El número total requerido de cubos es el cuadrado de esa cifra, es decir:

n = (11\,dados)^{2}

n = 121\,dados

Se necesita 121 dados cuadrados para formar el cuadrado con la mayor cantidad de dados posibles, quedando 4 dados sobrantes.

4 0
2 years ago
Other questions:
  • Simplify 0.2(3b-15c)+6c
    11·2 answers
  • A rock falls from rest a vertical distance of 0.72 meter to the surface of a planet in 0.63 second. What is the magnitude of the
    12·1 answer
  • Mark shoots arrows at a target and hits the bull's-eye about 40% of the time. find the probability that he hits the bull's-eye o
    7·1 answer
  • max donated 16 collars to the dog shelter . Mia donated some leashes. hiw many items does Mia need to donate that would require
    13·2 answers
  • If this particular arithmetic sequence, a7=34 and a15=74. What is the value of a21
    10·1 answer
  • Solve 2+1^6y=3x+4 for y.
    13·1 answer
  • An ice cream shop makes $1.25 on each small cone and $2.25 on each large cone. The ice cream shop sells between 60 and 80 small
    11·1 answer
  • Which method should be used to solve for x?
    15·1 answer
  • Each summer Primo Pizza and Pizza Supreme compete to see who has the larger summer profit. Let p(x) represent Primo Pizza's prof
    13·1 answer
  • A square with sides of length eight units, sits on a graph with its lower left hand corner at the origin (0,0). This square is t
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!