answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Marina CMI [18]
2 years ago
12

two students are on a balcony 19.6 m above the street. one student throws a ball vertically downward at 14.7 m:ds. at the same i

nstant, the other student throws a ball vertically upward at the samr speed. the second ball just misses the balcony on thr way down.

Physics
1 answer:
NARA [144]2 years ago
6 0

A. The difference in the two ball's time in the air is 3 seconds

B. The velocity of each ball as it strikes the ground is 24.5 m/s

C. The balls 0.500 s after they are thrown are 14.7 m apart

<h3>Further explanation</h3>

Acceleration is rate of change of velocity.

\large {\boxed {a = \frac{v - u}{t} } }

\large {\boxed {d = \frac{v + u}{2}~t } }

<em>a = acceleration ( m/s² )</em>

<em>v = final velocity ( m/s )</em>

<em>u = initial velocity ( m/s )</em>

<em>t = time taken ( s )</em>

<em>d = distance ( m )</em>

Let us now tackle the problem!

<u>Given:</u>

Initial Height = H = 19.6 m

Initial Velocity = u = 14.7 m/s

<u>Unknown:</u>

A. Δt = ?

B. v = ?

C. Δh = ?

<u>Solution:</u>

<h2>Question A:</h2><h3>First Ball</h3>

h = H - ut - \frac{1}{2}gt^2

0 = 19.6 - 14.7t - \frac{1}{2}(9.8)t^2

0 = 19.6 - 14.7t - 4.9t^2

4.9t^2 + 14.7t - 19.6 = 0

t^2 + 3t - 4 = 0

(t + 4)(t - 1) = 0

(t - 1) = 0

\boxed {t = 1 ~ second}

<h3>Second Ball</h3>

h = H + ut - \frac{1}{2}gt^2

0 = 19.6 + 14.7t - \frac{1}{2}(9.8)t^2

0 = 19.6 + 14.7t - 4.9t^2

4.9t^2 - 14.7t - 19.6 = 0

t^2 - 3t - 4 = 0

(t - 4)(t + 1) = 0

(t - 4) = 0

\boxed {t = 4 ~ seconds}

The difference in the two ball's time in the air is:

\Delta t = 4 ~ seconds - 1 ~ second

\large {\boxed {\Delta t = 3 ~ seconds} }

<h2>Question B:</h2><h3>First Ball</h3>

v^2 = u^2 - 2gH

v^2 = (-14.7)^2 + 2(-9.8)(-19.6)

v^2 = 600.25

v = \sqrt {600.25}

\boxed {v = 24.5 ~ m/s}

<h3>Second Ball</h3>

v^2 = u^2 - 2gH

v^2 = (14.7)^2 + 2(-9.8)(-19.6)

v^2 = 600.25

v = \sqrt {600.25}

\boxed {v = 24.5 ~ m/s}

The velocity of each ball as it strikes the ground is 24.5 m/s

<h2>Question C:</h2><h3>First Ball</h3>

h = H - ut - \frac{1}{2}gt^2

h = 19.6 - 14.7(0.5) - \frac{1}{2}(9.8)(0.5)^2

\boxed {h = 11.025 ~ m}

<h3>Second Ball</h3>

h = H + ut - \frac{1}{2}gt^2

h = 19.6 + 14.7(0.5) - \frac{1}{2}(9.8)(0.5)^2

\boxed {h = 25.725 ~ m}

The difference in the two ball's height after 0.500 s is:

\Delta h = 25.725 ~ m - 11.025 ~ m

\large {\boxed {\Delta h = 14.7 ~ m} }

<h3>Learn more</h3>
  • Velocity of Runner : brainly.com/question/3813437
  • Kinetic Energy : brainly.com/question/692781
  • Acceleration : brainly.com/question/2283922
  • The Speed of Car : brainly.com/question/568302

<h3>Answer details</h3>

Grade: High School

Subject: Physics

Chapter: Kinematics

Keywords: Velocity , Driver , Car , Deceleration , Acceleration , Obstacle

You might be interested in
Fill in the blanks to correctly complete the statement. The motion of an object moving with uniform circular motion is always to
Citrus2011 [14]
The sentence can be completed as follows:

<span>The motion of an object moving with uniform circular motion is always tangential to the circle, so the speed of an object moving in a circle is known as tangential speed.

The object moves by uniform circular motion due to the presence of a force (called centripetal force) pointing toward the center of the circle. Due to the presence of this force, the object experiences an acceleration (called centripetal acceleration) that makes the object turning in a circle. This centripetal acceleration changes only the direction of the velocity of the object, not its magnitude, which is called tangential speed and it is constant.</span>
8 0
2 years ago
Read 2 more answers
ASK YOUR TEACHER A 2.0-kg mass swings at the end of a light string with the length of 3.0 m. Its speed at the lowest point on it
Nadya [2.5K]

Answer:

  K_b = 78 J

Explanation:

For this exercise we can use the conservation of energy relations

starting point. Lowest of the trajectory

        Em₀ = K = ½ mv²

final point. When it is at tea = 50º

        Em_f = K + U

        Em_f = ½ m v_b² + m g h

where h is the height from the lowest point

        h = L - L cos 50

        Em_f = ½ m v_b² + mg L (1 - cos50)

energy be conserve

        Em₀ = Em_f

         ½ mv² = ½ m v_b² + mg L (1 - cos50)

         K_b = ½ m v_b² + mg L (1 - cos50)

let's calculate

          K_b = ½ 2.0 6.0² + 2.0 9.8 6.0 (1 - cos50)

          K_b = 36 +42.0

          K_b = 78 J

4 0
2 years ago
Suppose we replace the mass in the video with one that is four times heavier. How far from the free end must we place the pivot
Llana [10]

We must place the pivot to keep the meter stick in balance at 90 cm (10 cm from the weight) from the free end.

Answer: Option B

<u>Explanation:</u>

In initial stage, the meter stick’s mass and mass hanged in meter stick at one end are same. Refer figure 1, the mater stick’s weight acts at the stick’s mid-point.

If in case, the meter stick is to be at balanced form, then the acting torques sum would be zero. So,

                  m \times g \times(x)+((m \times g)(x-50 \mathrm{cm}))=0

                  (m \times g \times x)-(50 \times m \times g)+(m \times g \times x)=0

Taking out ‘mg’ as common and we get

                  2 x-50=0

                  2 x=50

                  x=\frac{50}{2}=25 \mathrm{cm}

Hence, the stick should be pivoted at a distance of,

                 x^{\prime}=100 \mathrm{cm}-25 \mathrm{cm}=75 \mathrm{cm}

So, the stick should be pivoted at a distance of 75 cm at the free end

Now, replace mass with another mass. i.e., four times the initial mass (as given)

If in case, the meter stick is to be at balanced form, then the acting torques sum would be zero. So,

                   4 m g(x)+(m g)(x-50 c m)=0

                   4 m g x+m g x-50 m g=0

Taking out ‘mg’ as common and we get

                   5 x=50

                   x=\frac{50}{5}=10 \mathrm{cm}

Hence, the stick should be pivoted at a distance of,

                   x^{\prime}=100 \mathrm{cm}-10 \mathrm{cm}=10 \mathrm{cm}

So, the stick should be pivoted at a distance of 10 cm from the free end.

Therefore, the option B is correct 90 cm (10 cm from the weight).

3 0
2 years ago
What happens to the particles of a liquid when energy is removed from them?
KonstantinChe [14]

Answer:

D: The distance between the particles decreases

Explanation:

Taking away energy slows down molecules, like how you slow down when you are cold (I think)

3 0
2 years ago
A charge of 4 nc is placed uniformly on a square sheet of nonconducting material of side 17 cm in the yz plane. (a) what is the
Ratling [72]

The charge density of the sheet is 1.384×10⁻⁷C/m².

Charge density is defined as the charge per unit area.

The sheet is a square of length  l=17 cm.

Calculate the area A of the sheet .

A=l^2=(17 cm)^2= (17*10^-^2m)^2=0.0289 m^2

The charge Q on the sheet is

Q=4nC=4*10^-^9C

The charge density σ is given by,

\sigma=\frac{Q}{A}

Substitute 4×10⁻⁹C for Q and 0.0289 m² for A.

\sigma=\frac{Q}{A}\\ =\frac{4*10^-^9C}{0.0289 m^2} \\ =1.389*10^-^7C/m^2

Thus, the charge density of the sheet is <u>1.384×10⁻⁷C/m².</u>

8 0
2 years ago
Other questions:
  • Consider the vector b⃗ with magnitude 4.00 m at an angle 23.5∘ north of east. what is the x component bx of this vector? express
    6·1 answer
  • If you calculate the thermal power radiated by typical objects at room temperature, you will find surprisingly large values, sev
    8·1 answer
  • A father demonstrates projectile motion to his children by placing a pea on his fork's handle and rapidly depressing the curved
    8·1 answer
  • A circular saw blade with radius 0.175 m starts from rest and turns in a vertical plane with a constant angular acceleration of
    12·1 answer
  • A truck of mass mT = 2000 kg is going north on Guadalupe with a speed of 4 m/s. The truck is struck by an eastbound car (mass of
    14·1 answer
  • A system contains a perfectly elastic spring, with an unstretched length of 20 cm and a spring constant of 4 N/cm.
    6·1 answer
  • A gold wire that is 1.8 mm in diameter and 15 cm long carries a current of 260 mA. How many electrons per second pass a given cr
    14·1 answer
  • Natalia is studying a wave produced in her magnetics lab. This wave can move through the empty space in a vacuum and carries a l
    6·2 answers
  • Two waves are traveling in the same direction along a stretched string. The waves are 45.0° out of phase. Each wave has an ampli
    6·1 answer
  • A wildebeest and chicken participate in a race over a 2.00km long course. the wildebeest travels at a speed of 16.0m/s and chick
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!