We calculate for the amount of chromium metal in the reactant by,
= 350 x (mass of Cr2/mass of Cr2O3)
= 350 x (104/152)
= 239.47 grams
The amount of Cr metal in the product is only 213.2 grams. Thus, the percent yield.
percent yield = (213.2 grams/239.47) x 100%
= 89%
The diatomic molecule that is formed when two atoms share six electrons is N2.
The atomic number of nitrogen is 7 and its electronic configuration is 2,5. This implies that, nitrogen has 5 electrons in its outermost shell. To attain the octet structure, it needs 3 electrons more. To form a diatomic molecule, two nitrogen atoms come together and each donate three electrons, which are equally shared between the two, thus, each ends up having 8 electrons in its outermost shell.
Answer:
21.86582KJ
Explanation:
The graphical form of the Arrhenius equation is shown on the image attached. Remember that in the Arrhenius equation, we plot the rate constant against the inverse of temperature. The slope of this graph is the activation energy and its y intercept is the frequency factor.
Applying the equation if a straight line, y=mx +c, and comparing the given equation with the graphical form of the Arrhenius equation shown in the image attached, we obtain the activation energy of the reaction as shown.
The final temperature of the water is the equilibrium temperature, or the also the final temperature of the iron after a long period of time. Applying the conservation of energy:
m,iron*C,iron*ΔT = - m,water*C,water*ΔT
The density of water is 1000 g/mL.
(25 g)(0.449 J/g·°C)(T - 398 K) = - (25 mL)(1000 g/mL)(4.18 J/g·°C)(T - 298)
Solving for T,
<em>T = 298.01 K</em>
Answer:
its height relative to some reference point, its mass, and the strength of the gravitational field
Explanation:
Gravitational energy is the potential energy associated with gravitational force, such as elevating objects against the Earth’s gravity. The potential energy due to elevated positions is called gravitational potential energy.
The factors that affect an object’s gravitational potential energy are the following; its height relative to some reference point, its mass, and the strength of the gravitational field it is in. For instance, consider a wallet lying on a table, it has less gravitational potential energy than the same wallet lying on top of a taller cupboard, and yet lesser gravitational potential energy than a heavier wallet lying on the same table.
If an object lies at a certain height above the Moon’s surface, it has less gravitational potential energy than the same object lying at the same height above the Earth’s surface because the Moon’s gravitational force is weaker.