answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Zinaida [17]
2 years ago
8

A pendulum is made of a small sphere of mass 0.250 kg attached to a lightweight string 1.20 m in length. As the pendulum swings

back and forth, the maximum angle that the string makes with the vertical is 34.0∘. Friction can be ignored. At the low point of the sphere's trajectory, what is the tension in the string?
Physics
1 answer:
olchik [2.2K]2 years ago
5 0

Answer:

0.833 N

Explanation:

Formula for Kinetic Energy E_k = \frac{mv^2}{2}

Formula for Potential Energy E_p = mgy

First we need to find the vertical distance between the maximum-angle position and the pendulum lowest point:

Using the swinging point as the reference, the vertical distance from the maximum-angle (34 degree) position to the swinging point is:

L * cos(34^o) = 1.2cos(34^o) = 1.2*0.83 = 0.995 \approx 1 m

At the lowest position, pendulum is at string length to the swinging point, which is 1.2 m. Therefore, the vertical distance between the maximum-angle position and the pendulum lowest point would be

y = 1.2 - 1 = 0.2 m.

As the pendulum is traveling from the maximum-angle position to the lowest point position, its potential energy would be converted to the kinetic energy.

By law of energy conservation:

E_k = E_p

\frac{mv^2}{2} = mgy

v^2 = 2gy

v = \sqrt{2gy}

Substitute g = 10 m/s^2 and y = 0.2 m:

v = \sqrt{2 * 10 * 0.2} = \sqrt{4} = 2 m/s

At lowest point, pendulum would generate centripetal tension force on the string:

F = m\frac{v^2}{L}

We can substitute mass m = 0.25, rotation radius L = 1.2 m and v = 2 m/s:

F = 0.25\frac{2^2}{1.2} = 0.833 N

You might be interested in
Calculate the de broglie wavelength (in picometers) of a hydrogen atom traveling at 440 m/s.
Aleonysh [2.5K]

De broglie wavelength, \lambda = \frac{h}{mv}, where h is the Planck's constant,  m is the mass and v is the velocity.

h = 6.63*10^{-34}

Mass of hydrogen atom,  m = 1.67*10^{-27}kg

v = 440 m/s

Substituting

   Wavelength \lambda = \frac{h}{mv} = \frac{6.63*10^{-34}}{1.67*10^{-27}*440} = 0.902 *10^{-9}m = 902 *10^{-12}m

1 pm = 10^{-12}m\\ \\ So , \lambda =902 pm

So  the de broglie wavelength (in picometers) of a hydrogen atom traveling at 440 m/s is 902 pm

7 0
2 years ago
A diver in the pike position (legs straight, hands on ankles) usually makes only one or one-and-a-half rotations. To make two or
Korolek [52]

Answer:

from the above analysis we can say that the angular velocity in the later case is more than that of the former case. This means that the number of rotation made in the truck case is more than that made in pike position.

Explanation:

This can be explained on the basis of conservation of angular momentum.

This means the initial and the final angular velocity is conserved. Consider initial position (1)in the pike and final position in the be truck position. So there inertia's will also be different.

⇒I_1\omega_1 = I_2\omega_2

\frac{I_1}{I_2} = \frac{\omega_2}{\omega_1}

also,

I_1= mr_1^2

I_2= mr_2^2

since, r_2^2

I_2^2

therefore,

\omega_1^2

So, from the above analysis we can say that the angular velocity in the later case is more than that of the former case. This means that the number of rotation made in the truck case is more than that made in pike position.

6 0
2 years ago
A material that has a fracture toughness of 33 MPa.m0.5 is to be made into a large panel that is 2000 mm long by 250 mm wide and
scoray [572]

Answer:

F_{allow} = 208.15kN

Explanation:

The word 'nun' for thickness, I will interpret in international units, that is, mm.

We will begin by defining the intensity factor for the steel through the relationship between the safety factor and the fracture resistance of the panel.

The equation is,

K_{allow} =\frac{K_c}{N}

We know that K_c is 33Mpa*m^{0.5} and our Safety factor is 2,

K_{allow} = \frac{33Mpa*m^{0.5}}{2} = 16.5MPa.m^{0.5}

Now we will need to find the average width of both the crack and the panel, these values are found by multiplying the measured values given by 1/2

<em>For the crack;</em>

\alpha = 0.5*L_c = 0.5*4mm = 2mm

<em>For the panel</em>

\gamma = 0.5*W = 0.5*250mm = 125mm

To find now the goemetry factor we need to use this equation

\beta = \sqrt{sec(\frac{\pi\alpha}{2\gamma})}\\\beta = \sqrt{sec(\frac{2\pi}{2*125mm})}\\\beta = 1

That allow us to determine the allowable nominal stress,

\sigma_{allow} = \frac{K_{allow}}{\beta \sqrt{\pi\alpha}}

\sigma_{allow} = \frac{16.5}{1*\sqrt{2*10^{-3} \pi}}

\sigma_{allow} = 208.15Mpa

So to get the force we need only to apply the equation of Force, where

F_{allow}=\sigma_{allow}*L_c*W

F_{allow} = 208.15*250*4

F_{allow} = 208.15kN

That is the maximum tensile load before a catastrophic failure.

4 0
2 years ago
A tennis ball of mass m=0.060 kg and speed v=25 m/s strikes a wall at a 45 angle and rebounds with the same velocity at 45°. Wha
Diano4ka-milaya [45]

To solve this problem we will apply the concepts related to the Impulse which can be defined as the product between mass and the total change in velocity. That is to say

p = m\Delta v

Here,

m = mass

\Delta v = Change in velocity

As we can see there are two types of velocity at the moment the object makes the impact,

the first would be the initial velocity perpendicular to the wall and the final velocity perpendicular to the wall.

That is to say,

v_i = vcos\theta

v_f = -v sin\theta

El angulo dado es de 45° y la velocidad de 25, por tanto

v_i = (25)cos(45) = 17.68m/s

v_f = -(25)sin(45) = -17.68m/s

The change of sign indicates a change in the direction of the object.

Therefore the impulse would be as

p = 0.060(-17.68-17.68)

p = -2.12kg \cdot m/s

The negative sign indicates that the pulse is in the opposite direction of the initial velocity.

3 0
2 years ago
You lower the temperature of a sample of liquid carbon disulfide from 90.3 ∘ C until its volume contracts by 0.507 % of its init
Lady_Fox [76]

Answer:

T_{f} = 85.89 ° C

Explanation:

The linear thermal expansion process is given by

      ΔL = L α ΔT

For the three-dimensional case, the expression takes the form

     ΔV = V β ΔT

Let's apply this equation to our case

     ΔV / V = ​​-0.507% = -0.507 10-2

     ΔT = (ΔV / V)  1 /β

     ΔT = -0.507 10⁻²  1 / 1.15 10⁻³

     ΔT = -4.409

     T_{f} –T₀ = 4,409

     T_{f} = T₀ - 4,409

     T_{f} = 90.3-4409

     T_{f} = 85.89 ° C

6 0
2 years ago
Read 2 more answers
Other questions:
  • If a rock is thrown upward on the planet mars with a velocity of 11 m/s, its height (in meters) after t seconds is given by h =
    6·1 answer
  • Choose the option below that best completes this sentence: when two circuit elements (e.g., light bulbs, resistors, etc.) are in
    7·1 answer
  • For each of the motions described below, determine the algebraic sign (+, -, or 0) of the velocity and acceleration of the objec
    14·1 answer
  • The force sensor measures the force on the sensor due to the bumper, but the cart's momentum change arises from the force on the
    12·1 answer
  • The dogs of four-time Iditarod Trail Sled Dog Race champion Jeff King pull two 100-kg sleds that are connected by a rope. The sl
    11·2 answers
  • A disk rotates around an axis through its center that is perpendicular to the plane of the disk. The disk has a line drawn on it
    9·1 answer
  • A 100 W incandescent lightbulb emits about 5 W of visible light. (The other 95 W are emitted as infrared radiation or lost as he
    12·1 answer
  • 13. An aircraft heads North at 320 km/h rel:
    5·1 answer
  • Timmy drove 2/5 of a journey at an average speed of 20 mph.
    8·2 answers
  • Below are four statements about acceleration. Which statement is not correct? A Acceleration always involves changing speed. B C
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!