You have to take note of the individual directions of the plane. Since one is heading east, and the other is heading west, the planes are heading at opposite directions. So, it means that their distance between each other would be equal to 1,200 miles which accounts for the sum of their individual distances. The equation is as follows:
Total Distance = Distance of slower plane + Distance of faster plane
1,200 miles = st + (30+s)(t)
where
s is the speed of the slower plane and t is the time. Since both are not given, the final answer would just be in terms of s.
1,200 = t(s + 30 + s)
t = 1200/(30+2s)
t = 600/(15+s)
Answer:
The acceleration is found as:
a = 1000 km/h²
Explanation:
Initial speed of the plane = 450 km/h
Final speed of the plane = 750 km/h
Time taken = 0.3 h
Acceleration can be defined as the change of speed of the object divided by the time taken to bring that change
Acceleration is given as:

where v(f) = 750 km/h , v(i) = 450 km/h , t = 0.3 h
Substitute the values in the equation of acceleration

This is the found result
Magnetic flux can be calculated by the product of the magnetic field and the area that is perpendicular to the field that it penetrates. It has units of Weber or Tesla-m^2. For the first question, when there is no current in the coil, the flux would be:
ΦB = BA
A = πr^2
A = π(.1 m)^2
A = π/100 m^2
ΦB = 2.60x10^-3 T (π/100 m^2 ) ΦB = 8.17x10^-5 T-m^2 or Wb (This is only for one loop of the coil)
The inductance on the coil given the current flows in a certain direction can be calculated by the product of the total number of turns in the coil and the flux of one loop over the current passing through. We do as follows:
L = N (ΦB ) / I
L = 30 (8.17x10^-5 T-m^2) / 3.80 = 6.44x10^-4 mH
Answer:
The student knows that a chemical reaction has occurred because Liquids 3 and 4 have different properties than Liquids 1 and 2.
Explanation:
Answer:
<h2>0.056 W</h2>
Explanation:

From ohms law we know that
Given data
P1 = 0.5 Watt
P2 = ?
V1= 3 Volts
V2= 1 Volt
Thus we can solve for the power dissipated as follows


<em>The resistor will dissipate 0.056 Watt</em>