Assuming that this gas is in ideal state, we can use the relation that for every 1 mol of an ideal gas it would have a volume of 22.4 L. But before using this, relation we need to convert the number of grams of H2 into moles by using the molar mass of 2.02 g/mol.
moles H2 = 0.00922 g ( 1 mol / 2.02 g ) = 0.005 mol H2
Volume H2 at STP = 0.005 mol H2 ( 22.4 L / 1 mol ) = 0.102 L of H2
Answer:
a = 4.72 m/s²
Explanation:
given,
mass of the box (m)= 6 Kg
angle of inclination (θ) = 39°
coefficient of kinetic friction (μ) = 0.19
magnitude of acceleration = ?
box is sliding downward so,
F - f = m a
f is the friction force
m g sinθ - μ N = ma
m g sinθ - μ m g cos θ = ma
a = g sinθ - μ g cos θ
a = 9.8 x sin 39° - 0.19 x 9.8 x cos 39°
a = 4.72 m/s²
the magnitude of acceleration of the box down the slope is a = 4.72 m/s²
Answer:

Explanation:
The intensity of a star noticed at a certain distance is inversely proportional to the square of distance. Then:

The intensity of the Sun in Jupiter relative to Earth is:



Answer:
0.266 m
Explanation:
Assuming the lump of patty is 3 Kg then applying the principal of conservation of linear momentum,
P= mv where p is momentum, m is mass and v is the speed of an object. In this case
where sunscripts p and b represent putty and block respectively, c is common velocity.
Substituting the given values then
3*8=v(15+3)
V=24/18=1.33 m/s
The resultant kinetic energy is transferred to spring hence we apply the law of conservation of energy
where k is spring constant and x is the compression of spring. Substituting the given values then
