Combine all of the x's on one side of the equation and then finish the problem!
The value of the swimmer's power output is calculated by dividing the work done by the time it took for the work to be completed. From the given in this item,
P = 3560 J/ 55 s = 64.73 W
Rounding off to two significant figures will give us 65 W.
Answer:
option C
Explanation:
given,
energy dissipated by the system to the surrounding = 12 J
Work done on the system = 28 J
change in internal energy of the system
Δ U = Q - W
system losses energy = - 12 J
work done = -28 J
Δ U = Q - W
Δ U = -12 -(-28)
Δ U = 16 J
hence, the correct answer is option C
Complete question:
The classic Goodyear blimp is essentially a helium balloon— a big one, containing 5700 m³ of helium. If the envelope and gondola have a total mass of 4300 kg, what is the maximum cargo load when the blimp flies at a sea-level location? Assume an air temperature of 20°C.
Answer:
52.4 kN
Explanation:
The helium at 20°C has a density of 0.183 kg/m³, and the cargo load is the weight of the system, which consists of the envelope, the gondola, and the helium.
The helium mass is the volume multiplied by the density, thus:
mHe = 5700 * 0.183 = 1043.1 kg
The total mass is then 5343.1 kg. The weight is the mass multiplied by the gravity acceleration (9.8 m/s²), so:
W = 5343.1*9.8
W = 53362.38 N
W = 52.4 kN