Fluorine, iodine and bromine are all in the same group. Fluorine been the first element in the group has less number of electron orbitals compare with bromine and iodine. Bromine and iodine has D orbitals which can take part in their bonding activities, this allows the elements to bond in a variety of ways, but fluorine does not have the D orbital and therefore is limited in its ion formation. <span />
Answer:
Bioluminescence
Explanation:
In the deep oceans, the sea cucumbers and polychaete worms use the bioluminescence for defense against predators and to find or attract prey by glowing so the predator can easily see it's glowing skin.
Answer:
Wind
Explanation:
Gymnosperms can be described as plants which lack flowers and fruits.
As they do not have flowers to attract insects like the angiosperms, they can, however, transfer their pollen through the wind. As pollen is very light in weight hence, it can be transported by the wind. The pollen transported by the wind usually results in self-pollination as the wind is not able to take the pollen to long distances.
The answers are as follows:
1. <span>An inhibitor has a structure that is so similar to the substrate that it can bond to the enzyme just like the substrate: t</span>his is called competitive inhibitor. A competitive inhibitor will compete with the substrate for the active site of the enzyme and bind to the active site, thus incapacitating the substrate from binding to the active site.
2. An inhibitor binds to a site on the enzyme that is not the active site: this is called non competitive inhibitors. Non competitive inhibitors bind to other site in the enzyme which is not the active site of the enzyme. The binding of the inhibitor changes the conformation of the enzyme as well as the active site, thus making it impossible for the substrate to bind to the enzyme effectively.
3. <span>usually, a(n) inhibitor forms a covalent bond with an amino acid side group within the active site, which prevents the substrate from entering the active site or prevents catalytic activity: this is called irreversible or permanent inhibition. Permanent inhibitors form covalent bonds with the enzyme and prevent substrate from binding to the enzyme.
4. T</span><span>he competitive inhibitor competes with the substrate for the ACTIVE SITE on the enzyme: The active site of an enzyme is the place where the substrate normally bind in order to activate a enzyme. Competitive inhibitors are those inhibitors that compete with the substrate for the active site of the enzyme and prevent the substrate from binding there.
5. W</span><span>hen the noncompetitive inhibitor is bonded to the enzyme, the shape of the ENZYME is distorted. The non competitive inhibitors are those inhibitors that bind to other places in the enzyme instead of the active site. The binding of the non competitive inhibitor usually distort the shape and the conformation of the enzyme thus preventing the substrate from binding to it effectively.
6. E</span><span>nzyme inhibitors disrupt normal interactions between an enzyme and its SUBSTRATE. The principal function of enzyme inhibitor is to prevent the substrate from binding to the appropriate enzyme. This is usually done in the human system in order to regulate the activities of enzymes.</span>
Oceanic-continental convergence occurs when an oceanic plate and a continental plate converge. They are pushed together and the oceanic plate is forced to go under the continental plate. So based on the diagram, this convergence occurred in letter B.
Oceanic-oceanic convergence occurs when two oceanic plates collide into one another. The oceanic plate that is older, denser and/or colder will be the plate that will go under the other. It will be forced down into the mantle. So in our diagram, this occurs in letter A.
Continental-continental convergence occurs when two continental plates converge. In this case, the plates push up against each other and create mountain ranges. Unlike the other two, they do not sink down, the movement is upwards. This occurs in the area C of your diagram.