answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
andre [41]
2 years ago
5

What is the volume of 1.56 kg of a compound whose molar mass is 81.86 g/mole and whose density is 41.2 g/ml?

Chemistry
1 answer:
hjlf2 years ago
7 0

Answer:

v = 37.9 ml

Explanation:

Given data:

Mass of compound = 1.56 kg

Density = 41.2 g/ml

Volume of compound = ?

Solution:

First of all we will convert the mass into g.

1.56 ×1000 = 1560 g

Formula:

D=m/v

D= density

m=mass

V=volume

v = m/d

v =  1560 g / 41.2 g/ml

v = 37.9 ml

You might be interested in
A large cylindrical tank contains 0.750 m3 of nitrogen gas at 27°C and 7.50 * 103 Pa (absolute pressure). The tank has a tight‐f
Nuetrik [128]

Answer: The answer is 68142.4 Pa

Explanation:

Given that the initial properties of the cylindrical tank are :

Volume V1= 0.750m3

Temperature T1= 27C

Pressure P1 =7.5*10^3 Pa= 7500Pa

Final properties of the tank after decrease in volume and increase in temperature :

Volume V2 =0.480m3

Temperature T2 = 157C

Pressure P2 =?

Applying the gas law equation (Charles and Boyle's laws combined)

P1V1/T1 = P2V2/T2

(7500 * 0.750)/27 =( P2 * 0.480)/157

P2 =(7500 * 0.750* 157) / (0.480 *27)

P2 = 883125/12.96

P2 = 68142.4Pa

Therefore the pressure of the cylindrical tank after decrease in volume and increase in temperature is 68142.4Pa

8 0
2 years ago
Draw the product obtained when trans-2-butene is treated first with br2 in ch2cl2, second with nanh2 in nh3, and then finally wi
oee [108]

<span>In order to do this, you have change the alkene into an alkyne. That is the aim of Br2/CH2Cl2 trailed by NaNH2. The Br2 with form a vic dihalide (3,4-dibromo octane). Adding of NaNH2 will execute two E2 reactions. -NH2 will eliminate an H from carbons 3 and 4. This double elimination will make the alkyne. Then handling the alkyne with H2/Lindlar will form the cis alkene. The final product will be CIS-3-octene.</span>

3 0
2 years ago
HA and HB are two strong monobasic acids. 25.0cm3 of 6.0mol/dm3 HA is mixed with 45.0cm3 of 3.0mol/dm3 HB.
Lostsunrise [7]

Answer:

The H+ (aq) concentration of the resulting solution is 4.1 mol/dm³

(Option C)

Explanation:

Given;

concentration of HA, C_A = 6.0mol/dm³

volume of HA, V_A  = 25.0cm³, = 0.025dm³

Concentration of HB, C_B = 3.0mol/dm³

volume of HB, V_B = 45.0cm³ = 0.045dm³

To determine the H+ (aq) concentration in mol/dm³ in the resulting solution, we apply concentration formula;

C_iVi = C_fV_f

where;

C_i is initial concentration

V_i is initial volume

C_f is final concentration of the solution

V_f is final volume of the solution

C_iV_i = C_fV_f\\\\Based \ on \ this\ question, we \ can \ apply\ the \ formula\ as;\\\\C_A_iV_A_i + C_B_iV_B_i = C_fV_f\\\\C_A_iV_A_i + C_B_iV_B_i = C_f(V_A_i\ +V_B_i)\\\\6*0.025 \ + 3*0.045 = C_f(0.025 + 0.045)\\\\0.285 = C_f(0.07)\\\\C_f = \frac{0.285}{0.07} = 4.07 = 4.1 \ mol/dm^3

Therefore, the H+ (aq) concentration of the resulting solution is 4.1 mol/dm³

7 0
2 years ago
1) Aluminum sulphate can be made by the following reaction: 2AlCl3(aq) + 3H2SO4(aq) Al2(SO4)3(aq) + 6 HCl(aq) It is quite solubl
kolezko [41]

Answer:

88.9%

Explanation:

Step 1:

The balanced equation for the reaction. This is given below:

2AlCl3(aq) + 3H2SO4(aq) —> Al2(SO4)3(aq) + 6HCl(aq)

Step 2:

Determination of the masses of AlCl3 and H2SO4 that reacted and the mass of Al2(SO4)3 produced from the balanced equation.

Molar mass of AlCl3 = 27 + (35.5x3) = 133.5g/mol

Mass of AlCl3 from the balanced equation = 2 x 133.5 = 267g

Molar mass of H2SO4 = (2x1) + 32 + (16x4) = 98g/mol

Mass of H2SO4 from the balanced equation = 3 x 98 = 294g

Molar mass of Al2(SO4)3 = (27x2) + 3[32 + (16x4)]

= 54 + 3[32 + 64]

= 54 + 3[96] = 342g/mol

Mass of Al2(SO4)3 from the balanced equation = 1 x 342 = 342g

Summary:

From the balanced equation above,

267g of AlCl3 reacted with 294g of H2SO4 to produce 342g of Al2(SO4)3.

Step 3:

Determination of the limiting reactant. This is illustrated below:

From the balanced equation above,

267g of AlCl3 reacted with 294g of H2SO4.

Therefore, 25g of AlCl3 will react with = (25 x 294)/267 = 27.53g of H2SO4.

From the calculations made above, we see that only 27.53g out 30g of H2SO4 given were needed to react completely with 25g of AlCl3.

Therefore, AlCl3 is the limiting reactant and H2SO4 is the excess.

Step 4:

Determination of the theoretical yield of Al2(SO4)3.

In this case we shall be using the limiting reactant because it will produce the maximum yield of Al2(SO4)3 since all of it is used up in the reaction.

The limiting reactant is AlCl3 and the theoretical yield of Al2(SO4)3 can be obtained as follow:

From the balanced equation above,

267g of AlCl3 reacted to produce 342g of Al2(SO4)3.

Therefore, 25g of AlCl3 will react to produce = (25 x 342) /267 = 32.02g of Al2(SO4)3.

Therefore, the theoretical yield of Al2(SO4)3 is 32.02g

Step 5:

Determination of the percentage yield of Al2(SO4)3.

This can be obtained as follow:

Actual yield of Al2(SO4)3 = 28.46g

Theoretical yield of Al2(SO4)3 = 32.02g

Percentage yield of Al2(SO4)3 =..?

Percentage yield = Actual yield /Theoretical yield x 100

Percentage yield = 28.46/32.02 x 100

Percentage yield = 88.9%

Therefore, the percentage yield of Al2(SO4)3 is 88.9%

3 0
2 years ago
Nuclear power plants produce energy using fission. One common fuel, uranium-235, produces energy through the fission reaction 23
Vikentia [17]

Answer:

mass of U-235  = 15.9 g (3 sig. figures)

Explanation:

1 atom can produce -------------------------> 3.20 x 10^-11 J energy

x atoms can produce ----------------------> 1.30 x 10^12 J energy

x = 1.30 x 10^12 / 3.20 x 10^-11

x = 4.06 x 10^22 atoms

1 mol ----------------------> 6.023 x 10^23 atoms

y mol ----------------------> 4.06 x 10^22 atoms

y = 0.0675 moles

mass of U-235 = 0.0675 x 235 = 15.8625

mass of U-235  = 15.9 g (3 sig. figures)

7 0
2 years ago
Other questions:
  • A chemist has dissolved a certain substance in water. The chemist knows that more of the substance could be dissolved into the w
    13·2 answers
  • PLEASE HELP!!!!!!
    8·2 answers
  • In 100 grams of sweet peas there are 14.5 carbohydrates,5.7 grams of sugars,5.1 grams of dietary fiber, 5.4 grams of protein and
    14·1 answer
  • If a 300.0 ml sample of a gas is heated at constant pressure from 25.0ºc to 55.0ºc, its new volume is _____ ml?
    5·1 answer
  • What pressure would a gas mixture in a 10.0 l tank exert if it were composed of 48.5 g he and 94.6 g co2 at 398 k?
    5·2 answers
  • What is the minimum pressure in kPa that must be applied at 25 °C to obtain pure water by reverse osmosis from water that is 0.1
    10·1 answer
  • Hydrogen is unique among the elements because ________. 1. It is not really a member of any particular group. 2. Its electron is
    7·1 answer
  • Consider the reaction: 2 Al + 3Br2 → 2 AlBr3 Suppose a reaction vessel initially contains 5.0 mole Al and 6.0 mole Br2. What is
    7·1 answer
  • Describe how the Rube Goldberg device design that you created follows the law of conservation of energy. Be sure to include both
    15·1 answer
  • 4. Which statement gives you enough information to say that the atom is electrically neutral?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!