Answer:

Explanation:
To solve this problem we use the Momentum's conservation Law, before and after the girl catch the ball:
(1)
At the beginning the girl is stationary:
(2)
If the girl catch the ball, both have the same speed:
(3)
We replace (2) and (3) in (1):

We can now solve the equation for v_{f}:

Answer:
Pressure is equal to the ratio of thrust to the area in contact. Upthrust is a force exerted by the fluids on an object placed in the fluid . Upthrust acts in upward direction.
Answer:
The amount of gas that is to be released in the first second in other to attain an acceleration of 27.0 m/s2 is

Explanation:
From the question we are told that
The mass of the rocket is m = 6300 kg
The velocity at gas is being ejected is u = 2000 m/s
The initial acceleration desired is 
The time taken for the gas to be ejected is t = 1 s
Generally this desired acceleration is mathematically represented as

Here
is the rate at which gas is being ejected with respect to time
Substituting values

=> 
=> 
=> 
=> 
Answer:
8.40 m/s
Explanation:
Slope of the plot is 0.119
Slope of a plot is given by the change in y direction divided by the change in x direction
Here, the y axis represents inverse wavelength and the x axis represents frequency.
f = Frequency (Hz, assumed)
v = Phase velocity (m/s, assumed)
λ = Wavelength (m, assumed)
So, slope

Now,


The speed of sound travelling in the tube is 8.40 m/s