Answer:
5985 can fit in the room!
Step-by-step explanation:
1) 150 * 100 = 15000
2) 6 * 6 = 36
3) 15000 - 36 = 14964
4) 14964 / 2.5 = 5985.6
5) But you can't fit almost half a person inside or create another whole person soo you round down to 5985
The correct answer would be choice A: 1.
When 3 coins are flipped, there are 8 possible outcomes.
0 Tails = 1 ways
1 Tails = 3 ways
2 Tails = 3 ways
3 Tails = 1 ways
If you add up all the different tails, you could get 12 tails. Divide 12 by 8 and you have 1.5 which is the average number of tails you could expect to get by flipping 3 coins.
∑ from 1 to infinity of 12(3/5)^(i - 1)
Since the common ratio is less than 1, the series is convegent. [i.e. 3/5 < 1]
Sum to infinity of a geometric series is given by a/(1 - r); where a is the first term, and r is the common ratio.
Sum = 12/(1 - 3/5) = 12/(2/5) = 30.
Answer:
The sample consisting of 64 data values would give a greater precision.
Step-by-step explanation:
The width of a (1 - <em>α</em>)% confidence interval for population mean μ is:

So, from the formula of the width of the interval it is clear that the width is inversely proportion to the sample size (<em>n</em>).
That is, as the sample size increases the interval width would decrease and as the sample size decreases the interval width would increase.
Here it is provided that two different samples will be taken from the same population of test scores and a 95% confidence interval will be constructed for each sample to estimate the population mean.
The two sample sizes are:
<em>n</em>₁ = 25
<em>n</em>₂ = 64
The 95% confidence interval constructed using the sample of 64 values will have a smaller width than the the one constructed using the sample of 25 values.
Width for n = 25:
Width for n = 64:
![\text{Width}=2\cdot z_{\alpha/2}\cdot \frac{\sigma}{\sqrt{64}}=\frac{1}{8}\cdot [2\cdot z_{\alpha/2}\cdot \sigma]](https://tex.z-dn.net/?f=%5Ctext%7BWidth%7D%3D2%5Ccdot%20z_%7B%5Calpha%2F2%7D%5Ccdot%20%5Cfrac%7B%5Csigma%7D%7B%5Csqrt%7B64%7D%7D%3D%5Cfrac%7B1%7D%7B8%7D%5Ccdot%20%5B2%5Ccdot%20z_%7B%5Calpha%2F2%7D%5Ccdot%20%5Csigma%5D)
Thus, the sample consisting of 64 data values would give a greater precision