<span>Number line refers to a mathematical process of
solving the equation with the use of lines.
=> 235 + 123
Starting from 0 you count 1 up to 235. Then starting from 235 you additionally
count another 123.
Then from zero start counting the total number to the line you stopped when
adding 123 to 235.
This simply equals to
=> 235 + 123
=> 358.
Pls. see attached image for illustration of number line.</span>Answer here
(a) 0.059582148 probability of exactly 3 defective out of 20
(b) 0.98598125 probability that at least 5 need to be tested to find 2 defective.
(a) For exactly 3 defective computers, we need to find the calculate the probability of 3 defective computers with 17 good computers, and then multiply by the number of ways we could arrange those computers. So
0.05^3 * (1 - 0.05)^(20-3) * 20! / (3!(20-3)!)
= 0.05^3 * 0.95^17 * 20! / (3!17!)
= 0.05^3 * 0.95^17 * 20*19*18*17! / (3!17!)
= 0.05^3 * 0.95^17 * 20*19*18 / (1*2*3)
= 0.05^3 * 0.95^17 * 20*19*(2*3*3) / (2*3)
= 0.05^3 * 0.95^17 * 20*19*3
= 0.000125* 0.418120335 * 1140
= 0.059582148
(b) For this problem, let's recast the problem into "What's the probability of having only 0 or 1 defective computers out of 4?" After all, if at most 1 defective computers have been found, then a fifth computer would need to be tested in order to attempt to find another defective computer. So the probability of getting 0 defective computers out of 4 is (1-0.05)^4 = 0.95^4 = 0.81450625.
The probability of getting exactly 1 defective computer out of 4 is 0.05*(1-0.05)^3*4!/(1!(4-1)!)
= 0.05*0.95^3*24/(1!3!)
= 0.05*0.857375*24/6
= 0.171475
So the probability of getting only 0 or 1 defective computers out of the 1st 4 is 0.81450625 + 0.171475 = 0.98598125 which is also the probability that at least 5 computers need to be tested.
Answer:
47
Step-by-step explanation:
No matter what number you do if there is one left then it's that number
So dif between 8 and 7 is 1
1*47 = 47
Your question is store uses the expression –2p + 50 to model the number of backpacks it sells per day, where the price, p, can be anywhere from $9 to $15. Which price gives the store the maximum amount of revenue, and what is the maximum revenue?
The answer is C. $12.50 per backpack gives the maximum revenue; the maximum revenue is $312.50.
Answer:
$1064.20
Step-by-step explanation:
36 payments of $168.45 have a total of $6064.20. The excess over the loan amount of $5000 is the interest paid:
$6064.20 -5000 = $1064.20 . . . . interest paid