Answer:
The standard deviation of that data set is 3.8
Step-by-step explanation:
The Empirical Rule states that, for a normally distributed random variable:
68% of the measures are within 1 standard deviation of the mean.
95% of the measures are within 2 standard deviation of the mean.
99.7% of the measures are within 3 standard deviations of the mean.
In this problem, we have that:
Mean = 55
95% of the data fall between 47.4 and 62.6. This means that 47.4 is 2 standard deviations below the mean and 62.6 is two standard deviations above the mean.
Using one of these points.
55 + 2sd = 62.6
2sd = 7.6
sd = 7.6/2
sd = 3.8
The standard deviation of that data set is 3.8
Answer:
a.
b. 6.1 c. 0.6842 d. 0.4166 e. 0.1194 f. 8.5349
Step-by-step explanation:
a. The distribution of X is normal with mean 6.1 kg. and standard deviation 1.9 kg. this because X is the weight of a randomly selected seedless watermelon and we know that the set of weights of seedless watermelons is normally distributed.
b. Because for the normal distribution the mean and the median are the same, we have that the median seedless watermelong weight is 6.1 kg.
c. The z-score for a seedless watermelon weighing 7.4 kg is (7.4-6.1)/1.9 = 0.6842
d. The z-score for 6.5 kg is (6.5-6.1)/1.9 = 0.2105, and the probability we are seeking is P(Z > 0.2105) = 0.4166
e. The z-score related to 6.4 kg is
and the z-score related to 7 kg is
, we are seeking P(0.1579 < Z < 0.4737) = P(Z < 0.4737) - P(Z < 0.1579) = 0.6821 - 0.5627 = 0.1194
f. The 90th percentile for the standard normal distribution is 1.2815, therefore, the 90th percentile for the given distribution is 6.1 + (1.2815)(1.9) = 8.5349
<span>if we take the centre of the circle as being the origin, we can say that
x coordinate is :cos o = x/r so x
= r cos o
</span><span>
and
y coordinate : cos(90-teta)= y/r
so y=r*cos(90-teta)
</span><span>
if teta is 29 degrees
y=r*cos(61)
and
x = r * cos(29)</span>
Scale factor is equal to 1/2, since the point went from 10 to 5
Answer:
8 teams
5 girls and 4 boys
Step-by-step explanation:
To determine how many teams we can have , we need to determine the greatest common factor.
girls:40 = 5*8
boys:32 = 4*8
The greatest common factor is 8
So we will have 8 teams
There will be 5 girls and 4 boys on each team