Answer:
<em>minimum required diameter of the steel linkage is 3.57 mm</em>
<em></em>
Explanation:
original length of linkage l = 10 m
force to be transmitted f = 2 kN = 2000 N
extension e = 5 mm= 0.005 m
maximum stress σ = 200 N/mm^2 = 
maximum stress allowed on material σ = force/area
imputing values,
200 = 2000/area
area = 2000/(
) =
m^2
recall that area = 
=
= 
= 
=
m = 3.57 mm
<em>maximum diameter of the steel linkage d = 3.57 mm</em>
Answer:
C. The user will not be able to see the junction object records or the field values.
Explanation:
For the profile of the user to give access permission such as create and read to the job without granting access permission to the production facility object, the value of the field or records of the junction object will not be seen by the user. This is one of the necessary criteria or principle for the universal container with a junction object.
The radius of the specimen is 60 mm
<u>Explanation:</u>
Given-
Length, L = 60 mm
Elongated length, l = 10.8 mm
Load, F = 50,000 N
radius, r = ?
We are supposed to calculate the radius of a cylindrical brass specimen in order to produce an elongation of 10.8 mm when a load of 50,000 N is applied. It is necessary to compute the strain corresponding to this
elongation using Equation:
ε = Δl / l₀
ε = 10.8 / 60
ε = 0.18
We know,
σ = F / A
Where A = πr²
According to the stress-strain curve of brass alloy,
σ = 440 MPa
Thus,

Therefore, the radius of the specimen is 60 mm
The answer & explanation for this question is given in the attachment below.
Answer:
-4.5 m/s
Explanation:
Assuming steady and incompressible flow and uniform properties at each section

Here V is velocity of flow and A is area, Q is flow rate out of the leak, subscript 1-4 represent different sections
At the surface, is negative hence the equation above will be

Making the subject of the formula then

Substituting the given values then
