Answer:
Option A is correct.
when it is used in a circuit. its terminal voltage will be less than 1.5 V.
Explanation:
The terminal voltage of the battery when it is in use in circuits drops lower than the 1.5 V rating given to it due to internal resistance.
All batteries give internal resistances when used in circuits. The internal resistance (though very small) is usually modelled as connected in series with the battery. It is due to some form of interference from the chemical makeup of the battery.
Normally, while the battery is fresh, the voltage (V) obtained at its terminals when connected in series with a resistor of resistance R is V = IR; where I is the current flowing in this circuit.
But once the interenal resistance (r) of the battery comes into play,
V = I₁ (r + R)
The current in the circuit evidently drops (that is I₁ < I) and V = (I₁r + I₁R)
The voltage across the terminals of the battery is no longer V but is now (V) × [R/(R+r)] which is less than the initial V and it reduces as the internal resistance, r, increases.
Hope this Helps!!!
Answer:
d. at the same velocity
Explanation:
I will assume the car is also travelling westward because it was stated that the helicopter was moving above the car. In that case, it depends where the observer is. If the observer is in the car, the helicopter would look like it is standing still ( because both objects have the same velocity). If the observer is on the side of the road, both objects would be travelling at the same velocity. Also recall that, velocity is a vector quantity; it is direction-aware. Velocity is the rate at which the position changes but speed is the rate at which object covers distance and it is not direction wise. Hence velocity is the best option.
Answer:
Random motion
Explanation:
If the boy throws the basketball forward while at a position on the skateboard, the motion of the ball will be a random motion since we are not told if the ball is moving on a straight line when thrown forward.
In this case, the boy will tend to move in the direction of the ball. Since the ball is moving in a random manner, the motion of the boy will also be a random motion.
A random motion is a motion of a body in a zig zag manner. It is also known as Brownian motion e.g motion of a buzzing mosquito, motion of a smoke coming out of a chimney etc.
If you know the formula for horizontal range, then finding the solution is immediate:


Suppose the spring begins in a compressed state, so that the block speeds up from rest to 2.6 m/s as it passes through the equilibrium point, and so that when it first comes to a stop, the spring is stretched 0.20 m.
There are two forces performing work on the block: the restoring force of the spring and kinetic friction.
By the work-energy theorem, the total work done on the block between the equilbrium point and the 0.20 m mark is equal to the block's change in kinetic energy:

or

where <em>K</em> is the block's kinetic energy at the equilibrium point,

Both the work done by the spring and by friction are negative because these forces point in the direction opposite the block's displacement. The work done by the spring on the block as it reaches the 0.20 m mark is

Compute the work performed by friction:

By Newton's second law, the net vertical force on the block is
∑ <em>F</em> = <em>n</em> - <em>mg</em> = 0 ==> <em>n</em> = <em>mg</em>
where <em>n</em> is the magnitude of the normal force from the surface pushing up on the block. Then if <em>f</em> is the magnitude of kinetic friction, we have <em>f</em> = <em>µmg</em>, where <em>µ</em> is the coefficient of kinetic friction.
So we have


