answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
max2010maxim [7]
2 years ago
5

As the drawing illustrates, a siren can be made by blowing a jet of air through 20 equally spaced holes in a rotating disk. The

time it takes for successive holes to move past the air jet is the period of the sound. The siren is to produce a 2338.6-Hz tone. What must be the angular speed ω (in rad/s) of the disk?
Physics
1 answer:
Aneli [31]2 years ago
4 0

Answer:

ω = 630.2663 = 630[rad/s]

Explanation:

Solution:

- We can tackle this question by simple direct proportion relation between angular speed for the disk to rotate a cycle that constitutes 20 holes. We will use direct relation with number of holes per cycle to compute the revolution per seconds i.e frequency of speed f.

                                  1rev(20 hole) -> 20(cycle)/rev  

                                        2006.2(cycle) -> f ?  

                              f = 2006.2/20 = 100.31rev at second  

- The relation between angular frequency and angular speed is given by:

                                 ω = 2πf

                                 ω = 2*3.14*100.31

                                 ω = 630.2663 = 630[rad/s]

You might be interested in
The motion of an object looks different to observers in different
Lubov Fominskaja [6]

Positions. Happy to help! Please mark as Brainliest!

7 0
2 years ago
(HELP!!! 30 pts if answered right. )What formula gives the strength of an electric field, E, at a distance from a known source c
umka2103 [35]

Answer:

E=\frac{k\,Q}{d^2}

Explanation:

The strength of an electric field E produced by a single charge Q at a distance d from it is given by the formula: E=\frac{k\,Q}{d^2}, where K represents the Coulomb constant.

Since the electric field E is derived from the Coulomb Force per unit charge using a positive test charge, the field's units will be in units of Newtons/Coulomb, and be the formula for the Coulomb electric force between to charges (Q1 and Q2),

F_C=k\frac{Q_1\,Q_2}{d^2}

but modified with only one charge showing in the numerator of the expression.

8 0
2 years ago
Assume you have a rocket in Earth orbit and want to go to Mars. The required change in velocity is ΔV≈9.6km/s . There are two op
Nostrana [21]

Answer: Part 1: Propellant Fraction (MR) = 8.76

Part 2: Propellant Fraction (MR) = 1.63

Explanation: The Ideal Rocket Equation is given by:

Δv = v_{ex}.ln(\frac{m_{f}}{m_{e}} )

Where:

v_{ex} is relationship between exhaust velocity and specific impulse

\frac{m_{f}}{m_{e}} is the porpellant fraction, also written as MR.

The relationship v_{ex} is: v_{ex} = g_{0}.Isp

To determine the fraction:

Δv = v_{ex}.ln(\frac{m_{f}}{m_{e}} )

ln(MR) = \frac{v}{v_{ex}}

Knowing that change in velocity is Δv = 9.6km/s and g_{0} = 9.81m/s²

<u>Note:</u> Velocity and gravity have different measures, so to cancel them out, transform km in m by multiplying velocity by 10³.

<u />

<u>Part 1</u>: Isp = 450s

ln(MR) = \frac{v}{v_{ex}}

ln(MR) = \frac{9.6.10^{3}}{9.81.450}

ln (MR) = 2.17

MR = e^{2.17}

MR = 8.76

<u>Part 2:</u> Isp = 2000s

ln(MR) = \frac{v}{v_{ex}}

ln (MR) = \frac{9.6.10^{3}}{9.81.2.10^{3}}

ln (MR) = 0.49

MR = e^{0.49}

MR = 1.63

8 0
2 years ago
"For a first order instrument with a sensitivity of .4 mV/K and a time" constant of 25 ms, find the instrument’s response as a f
ELEN [110]

Answer:

Explanation:

Given that:

For a first order instrument with a sensitivity of .4 mV/K

constant c  = 25 ms = 25 × 10⁻³ s

The initial temperature T_1 = 273 K

The final temperature T_2 = 473 K

The initial volume = 0.4 mV/K × 273 K = 109.2 V

The final volume =  0.4 mV/K × 473 K =  189.2 V

the instrument’s response as a function of time for a sudden temperature increase can be computed as follows:

Let consider y to be the function of time i.e y(t).

So;

y(t) = 109.2  + (189.2 - 109.2)( 1 - \mathbf{e^{-t/c}})mV

y(t) = (109.2 +  80 ( 1 - \mathbf{e^{t/25\times 10^{-3}}})) mV

Plot the response y(t) as a function of time.

The plot of y(t) as a function of time can be seen in the diagram  attached below.

What are the units for y(t)?

The unit for y(t) is mV.

Find the 90% rise time for y(t90) and the error fraction,

The 90% rise time for y(t90) is as follows:

Initially 90% of 189.2 mV = 0.9 ×  189.2 mV

=  170.28 mV

170.28 mV = (109.2 +  80 ( 1 - \mathbf{e^{t/25\times 10^{-3}}})) mV

170.28 mV - 109.2 mV = 80 ( 1 - \mathbf{e^{t/25\times 10^{-3}}})) mV

61.08 mV =  80 ( 1 - \mathbf{e^{t/25\times 10^{-3}}})) mV

0.7635  mV = ( 1 - \mathbf{e^{t/25\times 10^{-3}}})) mV

t = 1.44 × 25  × 10⁻³ s

t = 0.036 s

t = 36 ms

The error fraction = \dfrac{189.2-170.28  }{189.2}

The error fraction = 0.1

The error fraction = 10%

8 0
2 years ago
A balloon is at a height of 81m and is ascending upwards with a velocity of 12m/s. A body of 2kg weight is dropped from it. If g
kap26 [50]
I know you are Indian by your question, HC Verma class 9 or 11 !!

if you got any problem, comment !!

7 0
2 years ago
Other questions:
  • An electron is in a vacuum near the surface of the Earth. Where should a second electron be placed so that the net force on the
    9·1 answer
  • You throw a beanbag in the air and catch it 2.2 s later at the same place at which you threw it. How high did it go? What was th
    9·1 answer
  • The use of air bags in cars reduces the force of impact by a factor of 110.(The resulting force is only as great.) What can be s
    15·2 answers
  • A 4.5-m-long wooden board with a 24-kg mass is supported in two places. One support is directly under the center of the board, a
    14·2 answers
  • When an ice pack is applied to an injury, thermal energy from the injured area transfers to the ice, causing the blood vessels w
    8·2 answers
  • 2. A pebble is dropped down a well and hits the water 1.5 s later. Using the equations for motion with constant acceleration, de
    14·1 answer
  • A 10. g cube of copper at a temperature T1 is placed in an insulated cup containing 10. g of water at a temperature T2. If T1 &g
    12·1 answer
  • A bowling ball with a negative initial velocity slows down as it rolls down the lane toward the pins. Is the bowling ballâs acce
    13·1 answer
  • Suppose the rocket is coming in for a vertical landing at the surface of the earth. The captain adjusts the engine thrust so tha
    5·1 answer
  • Explain why it is dangerous to jump from a fast moving train
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!