When wool is rubbed with a balloon, the wool is left with a positive charge as electrons have travelled from the wool to the balloon which means the balloon now has a negative charge.
Now that the balloon has a negative charge, you need to know:
The tissue paper originally contains electrons and protons
The fact that the balloon has a negative charge, it will ATTRACT protons because protons are POSITIVE and electrons are NEGATIVE.
So once they are attracted, they will move closer to one another.
<span><span>1.
</span>If the ramp has a length of 10 and has a
mechanical advantage (MA) of 5. Then we need to find the height of the ramp.
Formula:
MA = L / H
Since we already have the mechanical advantage and length, this time we need to
find the height .
MA 5 = 10 / h
h = 10 / 5
h = 2 meters
Therefore, the ramp has a length of 10 meters, a height of 2 meters with a
mechanical advantage of 5.</span>
When air is blown into the open pipe,
L = 
where nis any integral number 1,2,3,4 etc. and λ is the wavelength of the oscillation
⇒λ=
Note here that n=1 is for fundamental, n=2 is first harmonic and so on..
⇒ third harmonic will be n=4
Given L=6m, n=4, solving for λ we get:
λ=
=3m
Relationship of frequency(f), velocity of sound (c) and wavelength(λ) is:
c=f.λ Or f= 
⇒f=
≈115 Hz
Answer:
F = 1618.65[N]
Explanation:
To solve this problem we use the following equation that relates the mass, density and volume of the body to the floating force.
We know that the density of wood is equal to 750 [kg/m^3]
density = m / V
where:
m = mass = 165[kg]
V = volume [m^3]
V = m / density
V = 165 / 750
V = 0.22 [m^3]
The floating force is equal to:
F = density * g * V
F = 750*9.81*0.22
F = 1618.65[N]
To solve this problem it is necessary to apply the concepts related to Newton's second law and the kinematic equations of movement description.
Newton's second law is defined as

Where,
m = mass
a = acceleration
From this equation we can figure the acceleration out, then



From the cinematic equations of motion we know that

Where,
Final velocity
Initial velocity
a = acceleration
x = displacement
There is not Final velocity and the acceleration is equal to the gravity, then





From the equation of motion where acceleration is equal to the velocity in function of time we have




Therefore the time required is 0.0705s