answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ra1l [238]
2 years ago
6

Assume that segment r exerts a force of magnitude t on segment l. what is the magnitude flr of the force exerted on segment r by

segment l?

Physics
1 answer:
mrs_skeptik [129]2 years ago
8 0
If we are talking on the force being exerted by a segment of a rope of lenght R on the right on a point M which is being also pulled from the Left by a segment of rope R  as shown in the figure attached. Then we invoke Newton's Third Law:
"Any force exerted by an object (in this case a segment of the rope) also suffers a equal and opposite force".
If we pick T_R=T whis is the tension exerted by the right segment then the left segment will also exert an equal and opposite force so we have that T_L=-T

You might be interested in
What is the internal energy (to the nearest joule) of 10 moles of Oxygen at 100 K?
kkurt [141]

Answer:

U = 12,205.5 J

Explanation:

In order to calculate the internal energy of an ideal gas, you take into account the following formula:

U=\frac{3}{2}nRT        (1)

U: internal energy

R: ideal gas constant = 8.135 J(mol.K)

n: number of moles = 10 mol

T: temperature of the gas = 100K

You replace the values of the parameters in the equation (1):

U=\frac{3}{2}(10mol)(8.135\frac{J}{mol.K})(100K)=12,205.5J

The total internal energy of 10 mol of Oxygen at 100K is 12,205.5 J

6 0
2 years ago
A 5.0-kg crate is resting on a horizontal plank. The coefficient of static friction is 0.50 and the coefficient of kinetic frict
Harlamova29_29 [7]

Answer:

The mass of the crate is 5kg.

We know that the force of friction can be obtained by:

F = N*k

where k is the coefficient of friction, where we use the static one if the object is at rest, and the kinetic one if the object os moving. N is the normal force

If we tilt the base making an angle of 30° with the horizontal, now the normal force against the plank will be equal to the fraction of the weight in the direction normal to the surface of the plank.

Knowing that the angle is 30°, then the fraction of the weight that pushes against the normal is Cos(30°)*W = cos(30°)*5kg*9.8m/s^2 = 42.4N

The fraction of the force in the parallel direction to the plank (the force that would accelerate the crate downwards) is:

F = sin(30°)*5k*9,8m/s = 24.5N

now, the statical friction force is:

Fs = 42.4N*0.5 = 21.2N

The statical force is less than the 24.5N, so the crate will move downwards, then the force that acts on the crate is the kinetic force of friction:

Fk = 42.4N*0.4 = 16.96N

Then, the total force that acts on the crate is:

total force = F - Fk = 24.5N - 16.69N = 7.54N and the direction of this force points downside along the parallel direction of the plank.

3 0
2 years ago
Someone fires a 0.04 kg bullet at a block of wood that has a mass of 0.5 kg. (The block of wood is sitting on a frictionless sur
d1i1m1o1n [39]

Answer:

The speed of bullet and wooden bock coupled together, V = 22.22 m/s

Explanation:

Given that,

Mass of the bullet, m = 0.04 Kg

Mass of the wooden block, M = 0.5 Kg

The initial velocity of the bullet, u = 300 m/s

The initial velocity of the wooden block, U = 0 m/s

The final velocity of the bullet and wooden bock coupled together, V = 0 m/s

According to the conservation of linear momentum, the total momentum of the body after impact is equal to the total momentum before impact.

Therefore,

                              mV + MV = mu + MU

                               V(m+M) = mu

                                 V = mu/(m+M)

Substituting the values in the above equation,

                                V = 0.04 Kg x 300 m/s  / (0.04 Kg+ 0.5 Kg)

                                    = 22.22 m/s

Hence, the speed of bullet and wooden bock coupled together, V = 22.22 m/s

8 0
2 years ago
100-ft-long horizontal pipeline transporting benzene develops a leak 43 ft from the high-pressure end. The diameter of the leak
Amanda [17]

Answer:

Explanation:

The mass flow rate of benzene from the leak in the pipeline containing benzene is:

Q_m=AC_o\sqrt{2\rho g_cP_g}

Here, Q_m is the mass flow rate through the leak of the pipeline. A is the area of the hole, C_o is the discharge rate, \rho is the fluid density, g_c is the gravitational constant and P_g is the constant gauge pressure within the process unit.

The diametre of the leak (d) is 0.1 in. Convert from in to ft.

d=(0.1 in)(\frac{1ft}{12in})\\=8.33\times 10^{-3}ft

Calculate the area (A) of the hole. The area of the hole is.

A=\frac{\pi d^2}{4}

Substitute 3.14 for \pi and 8.33\times 10^{-3}ft for d and calculate A.

A=\frac{\pi d^2}{4}\\\\\frac{(3.14)(8.33\times 10^{-3})^2}{4}\\\\5.45\times 10^{-5}ft^2

The specific gravity of benzene is 0.8794. Specific gravity is the ratio of th density of a substance to the density of a reference substance.

Specific gravity of benzene = density of benzenee/denity of reference substance

Rewrite the expression in terms of density of benzene.

Density of benzene = specific gravity of benzene x density of reference substance

Take the reference substance as water. Density of water is 62.4\frac{Ib_m}{ft^3}. Calculate density of benzene.

Density of benzene = specific gravity of benzene x density of reference substance

=(0.8794)(62.4\frac{Ib_m}{ft^3})\\\\54.9\frac{Ib_m}{ft^3}

Calculate the pressure at the point of leak. The pressure is the average of the pressure of the high and low pressure end. Write the expression to calculate the average pressure.

Upstream x distance from upstream pressure end

P_g=+DOWNSTREAM PRESSURE X DISTANCE FROM THE DOWNSTREAM PRESSURE END/ TOTAL LENGTH OF THE HORIZONTAL PIPELINE

Calculate the distance from the downstream pressure end. The distance from upstream pressure end is 43 ft. Total of the pipe is 100 ft.

Distance from the downstream pressure end = Total length of the pipe - Distance from the upstream pressure end

The distance from upstream pressure end is 43 ft. Total length of the pipe is 100 ft. Substitute the values in the equation.

Distance from the downstream pressure end = Total length of the pipe - Distance from the upstream pressure end

= 100ft - 43ft = 57 ft

Substitute 50 psig for upstream, 43 ft fr distance from the upstream pressure end, 40 psig for downstream pressure, 57 ft for distance from the downstream pressure end, and 100 ft for the total length of the horizontal pipeline and calculate P_g.

Upstream x distance from upstream pressure end

P_g=+DOWNSTREAM PRESSURE X DISTANCE FROM THE DOWNSTREAM PRESSURE END/ TOTAL LENGTH OF THE HORIZONTAL PIPELINE

=\frac{(50psig\times 43ft)+(40psig \times 57ft)}{100ft}\\\\=44.3psig

Convert the pressure from psig to Ib_f/ft^2

P_g=(44.3psig)(\frac{1\frac{Ib_f}{ft^2}}{1psig})(144\frac{in^2}{ft^2})\\\\=6,379.2\frac{Ib_f}{ft^2}

The leak is like a sharp orifice. Take the value of the discharge coefficient as 0.61.

Substitute 5.45\times 10^{-5}ft^2 for A. 0.61 for C_o, 54.9\frac{Ib_m}{ft^3} for \rho, 32.17\frac{ft.Ib_m}{Ib_f.s^2} for g_c, and 6,379.2\frac{Ib_f}{ft^2} for P_g and calculate Q_m

Q_m=AC_o\sqrt{2\rho g_cP_g}\\\\=(5.45\times 10^{-5}ft^2)(0.61)\sqrt{2(54.9\frac{Ib_m}{ft^3})(32.17\frac{ft.Ib_m}{Ib_f.s^2})(6,379.2\frac{Ib_f}{ft^2})}\\\\(3.3245\times 10^{-5}ft^2)\sqrt{22,533,031.21\frac{Ib^2_m}{ft^4.s^2}}\\\\=0.158\frac{Ib_m}{s}

The mass flow rate of benzene through the leak in the pipeline is 0.158\frac{Ib_m}{s}

8 0
2 years ago
A 29 cm pencil is placed 35cm in front of a convex lens and is illuminated by a spotlight. the focal point of the lens is 28cm f
vovikov84 [41]
A) What is the height of the pencil image
4 0
2 years ago
Other questions:
  • To avoid an accident, a driver steps on the brakes to stop a 1000-kg car traveling at 65km/h. if the braking distance is 35 m, h
    7·1 answer
  • Ashley made a paper boat and attached paperclips to the edges. In order to control her boat she used a horseshoe magnet. How is
    6·2 answers
  • By reacting, an element that does not have a complete set of valence electrons can acquire an electron configuration similar to
    12·2 answers
  • Which has a larger resistance a 60 w lightbulb or a 100 w lightbulb?
    14·1 answer
  • What are close-toed shoes least likely to provide protection against?
    14·2 answers
  • A 250-kg crate is on a rough ramp, inclined at 30° above the horizontal. The coefficient of kinetic friction between the crate a
    15·2 answers
  • A neutron star has a mass of 2.0 × 1030 kg (about the mass of our sun) and a radius of 5.0 × 103 m (about the height of a good-s
    14·2 answers
  • The moon has a mass of 7.4 × 1022 kg and completes an orbit of radius 3.8×108 m about every 28 days. The Earth has a mass of 6 ×
    15·1 answer
  • Consider three identical metal spheres, A, B, and C. Sphere A carries a charge of -2.0 µC; sphere B carries a charge of -6.0 µC;
    6·1 answer
  • Unit of work is derived unit why​
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!