Answer:
630cm/s
Explanation:
In simple harmonic motion, the tangential velocity is expressed mathematically as v = ὦr
ὦ is the angular velocity = 2πf
r is the radius of the disk
f is the frequency
Given the radius of disk = 10cm
frequency = 10Hz
v = 2πfr
v = 2π×10×10
v = 200π
v = 628.32 cm/s
The tangential velocity = 630cm/s ( to 2 significant figures)
Answer:

Explanation:
given data:
wavelength \lambda = 708nm = 708*10^{-9} m
using the following relation:

according to the given information
second and third dark fringe is at same location. so






Answer:
(E) The two objects reach the bottom of the incline at the same time.
Explanation:
Given;
first object with mass, m
second object with mass, 5m
The acceleration of gravity for both object is the same = 9.8 m/s²
Since both objects have the same acceleration of gravity, and no external force due friction (frictionless inclined plane), they will reach bottom of the inclined at the time.
Thus, the acceleration due to gravity is constant for all objects regardless of their masses.
Therefore, the correct option is E;
(E) The two objects reach the bottom of the incline at the same time.
F=ma
f?
m=1300kg
a=1.07m\s squared
f=1300kg x 1.07=1391N
The relationship between the frequency and wavelength of a wave is given by the equation:
v=λf, where v is the velocity of the wave, λ is the wavelength and f is the frequency.
If we divide the equation by f we get:
λ=v/f
From here we see that the wavelength and frequency are inversely proportional. So as the frequency increases the wavelength decreases.
So the second statement is true: As the frequency of a wave increases, the shorter the wavelength is.