answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
timama [110]
2 years ago
15

The electric field of a charge is defined by the force on what kind of particle?

Physics
1 answer:
Verdich [7]2 years ago
3 0

Answer:

correct answers C

Explanation:

the electric field is derived from Coulomb's law, where the charge has been assumed to be positive.

The expression remains

         F = k q₁ q / r²

the electric field is

         Fe = (k q₁ / r²) q

           

The amount between parentises rs constant

by checking the correct answers C

You might be interested in
A massive tractor rolls down a country road. in a perfectly inelastic collision, a small sports car runs into the machine from b
Helga [31]
The answer for this change in the magnitude of momentum is the same for both because momentum is always conserved so both vehicles have the identical change. 
So for determining who has the greater change in kinetic energy, momentum (P) = mv so P^2 = m^2 v^2 P^2 / 2m = 1/2 m v^2 = energy So the weightier the mass the smaller the energy change for the same momentum change so in here, the car has a greater change in kinetic energy.
5 0
2 years ago
Read 2 more answers
The point on the graph that lies on the y-axis (vertical axis) is called the y-intercept. What does the y-intercept tell you abo
jekas [21]

Answer:

The starting position of the runner.

Explanation:

When you look at the graph, you can see that the first point on the graph is twenty on the y-axis.

The runner starts at twenty, and ends at thirty.

Therefore, the runner starts at twenty on the y-axis, so it's the starting position of the runner.

7 0
2 years ago
The average kinetic energy of the molecules of an ideal gas at 10∘C has the value K10. At what temperature T1 (in degrees Celsiu
Westkost [7]

Answer:

A) T1 = 566 k = 293°C

B) T2 = 1132 k = 859°C

Explanation:

A)

The average kinetic energy of the molecules of an ideal gas is givwn by the formula:

K.E = (3/2)KT

where,

K.E = Average Kinetic Energy

K = Boltzman Constant

T = Absolute Temperature

At 10°C:

K.E = K10

T = 10°C + 273 = 283 K

Therefore,

K10 = (3/2)(K)(283)

FOR TWICE VALUE OF K10:

T = T1

Therefore,

2 K10 = (3/2)(K)(T1)

using the value of K10:

2(3/2)(K)(283) = (3/2)(K)(T1)

<u>T1 = 566 k = 293°C</u>

<u></u>

B)

The average kinetic energy of the molecules of an ideal gas is given by the formula:

K.E = (3/2)KT

but K.E is also given by:

K.E = (1/2)(m)(vrms)²

Therefore,

(3/2)KT = (1/2)(m)(vrms)²

vrms = √(3KT/m)

where,

vrms = Root Mean Square Velocity of Molecule

K = Boltzman Constant

T = Absolute Temperature

m = mass

At

T = 10°C + 273 = 283 K

vrms = √[3K(283)/m]

FOR TWICE VALUE OF vrms:

T = T2

Therefore,

2 vrms = √(3KT2/m)

using the value of vrms:

2√[3K(283)/m] = √(3KT2/m)

2√283 = √T2

Squaring on both sides:

(4)(283) = T2

<u>T2 = 1132 k = 859°C</u>

8 0
2 years ago
Gold and silicon are mutually insoluble in the solid state and form a eutectic system with a eutectic temperature of 636 k and a
kupik [55]
Yupp its c because my dad farted 
3 0
2 years ago
You testify as an expert witness in a case involving an accident in which car A slid into the rear of car B, which was stopped a
bekas [8.4K]

Answer:

A) 12.08 m/s

B) 19.39 m/s

Explanation:

A) Down the hill, we will apply Newton’s second law of motion in the downward direction to get:

mg(sinθ) – F_k = ma

Where; F_k is frictional force due to kinetic friction given by the formula;

F_k = (μ_k) × F_n

F_n is normal force given by mgcosθ

Thus;

F_k = μ_k(mg cosθ)

We now have;

mg(sinθ) – μ_k(mg cosθ) = ma

Dividing through by m to get;

g(sinθ) – μ_k(g cosθ) = a

a = 9.8(sin 12.03) - 0.6(9.8 × cos 12.03)

a = -3.71 m/s²

We are told that distance d = 24.0 m and v_o = 18 m/s

Using newton's 3rd equation of motion, we have;

v = √(v_o² + 2ad)

v = √(18² + (2 × -3.71 × 24))

v = 12.08 m/s

B) Now, μ_k = 0.10

Thus;

a = 9.8(sin 12.03) - 0.1(9.8 × cos 12.03)

a = 1.08 m/s²

Using newton's 3rd equation of motion, we have;

v = √(v_o + 2ad)

v = √(18² + (2 × 1.08 × 24))

v = 19.39 m/s

6 0
2 years ago
Other questions:
  • You do 174 J of work while pulling your sister back on a swing, whose chain is 5.10 m long, until the swing makes an angle of 32
    8·1 answer
  • A 10-kg dog is running with a speed of 5.0 m/s. what is the minimum work required to stop the dog in 2.40 s?
    10·1 answer
  • The acceleration due to gravity on Jupiter is 23.1 m/s2, which is about twice the acceleration due to gravity on Neptune. Which
    7·2 answers
  • A titanium bicycle frame displaces 0.314 l of water and has a mass of 1.41 kg.part what is the density of the titanium in g/cm3
    7·1 answer
  • Which combination of initial horizontal velocity, (vh) and initial vertical velocity, (vv) results in the greatest horizontal ra
    7·1 answer
  • The image shows positions of the earth and the moon in which region would an astronaut feel the lightest
    10·2 answers
  • A container of nitrogen (an ideal diatomic gas, molecular weight=28) is at a pressure of 2 atm and has a mass density of 1.6 gra
    13·1 answer
  • An avant-garde composer wants to use the Doppler effect in his new opera. As the soprano sings, he wants a large bat to fly towa
    9·1 answer
  • when the piston of a fountain pen with a nib is dipped into ink and and the air is released by pressing it, the ink fills in the
    15·1 answer
  • Study the diagram and calculate the effort required to balance the load​
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!