Answer:
2 x 10⁻³ volts
Explanation:
B = magnetic of magnetic field parallel to the axis of loop = 1 T
= rate of change of area of the loop = 20 cm²/s = 20 x 10⁻⁴ m²
θ = Angle of the magnetic field with the area vector = 0
E = emf induced in the loop
Induced emf is given as
E = B
E = (1) (20 x 10⁻⁴ )
E = 2 x 10⁻³ volts
E = 2 mV
Answer:
a) 2.5m/s
b) 0.91m/s
c) 0m/s
Explanation:
Average velocity can be said to be the ratio of the displacement with respect to time.
Average speed on the other hand is the ratio of distance in relation to time
Thus, to get the average velocity for the first half of the swim
V(average) = displacement of first trip/time taken on the trip
V(average) = 50/20
V(average) = 2.5m/s
Average velocity for the second half of the swim will be calculated in like manner, thus,
V(average) = 50/55
V(average) = 0.91m/s
Average velocity for the round trip will then be
V(average) = 0/75, [50+25]
V(average) = 0m/s
Answer:
a. be sure to hold expansion cards by the edge connectors
Explanation:
Removal of loose jewelry is a good safety practice. Also not touching a microchip with a magnetized screwdriver is also a good practice.
But holding expansion cards by the edge connectors is not a good practice, so it is the odd one in the question. Therefore answer option a provides the correct and best answer to the question
Answer: a) 95.07m b) 81.88 m
Explanation:
a)
For finding the distance when vehicle is going downhill we have the formula as:
Stop sight distance= Velocity*Reaction time + Velocity² / 2*g*(f constant- Grade value)
Now by AASHTO, we have for v= 45 mph= 72.4 kph, f= 0.31
Reaction time= 0.28
So putting values we get
Stop sight distance= 0.28*72.4 *1 + 
Stop sight distance= 95.07 m
b)
For finding the distance when vehicle is going uphill we have the formula as:
Stop sight distance= Velocity*Reaction time + Velocity² / 2*g*(f constant- Grade value)
Now by AASHTO, we have for v= 45 mph= 72.4 kph, f= 0.31
Reaction time= 0.28
So putting values we get
Stop sight distance= 0.28*72.4 *1 + 
Stop sight distance= 81.88 m
Answer:
1.6 s
Explanation:
To find the time in which the potential difference of the inductor reaches 24V you use the following formula:

V_o: initial voltage = 60V
R: resistance = 24-Ω
L: inductance = 42H
V_L: final voltage = 24 V
You first use properties of the logarithms to get time t, next, replace the values of the parameter:

hence, after 1.6s the inductor will have a potential difference of 24V