The first ionization energy of a known element is the energy
it needs to remove its highest energy or outermost electron. It is done to make
a neutral atom be a positively charged ion. The first ionization energy of neon
as a chemical equation is this:
Ne (g) -> Ne+ (g) + e-
The basis of finding the answer to this problem is to know the electronic configuration of Fluorine. That would be: <span>[He] 2s</span>²<span> 2p</span>⁵. The valence electrons, which are the outermost electrons of the atom, are the ones that participate in bonding. <em>Since the highest orbital for F is 2p, that means the highest energy occupied would be 2.</em>
Density H2O = 1g/cm³
1,5 kg H2O = 1500g = 1500cm³ (1dm³ = 1000cm³)
3moles of NaCl-----in---------1500cm³ H2O
x moles of NaCl ----in--------1000cm³ H2O
x = 2moles of NaCl
answer: 2 mol/dm³
Answer:
As you haven't explained what measurements you took before solving this problem, I will explain the general procedure to evaluate the efficiency of a kettle. I hope it helps you. I´ll send an attachement file with the full answer, since I couldn't write it here.
I assume that the material that is going to be heated in the kettle is water.
1- You have to boil water in it and take the time it takes to its boiling point (in seconds).
2- You have to evaluate the amount of energy the water absorbed Q with the efficiency formula which I explain in the attachement file.
3- Divide Q by the time it took to bring the water to boiling so you can have the power it consumed.
4- You divide the last value you obtained by the Kettles's power rating.
5- Multiply the last value by 100 to obtain a percentage value of efficiency.
Explanation:
Efficiency is the ration of a machine's useful work, in this case how much energy the water absorbed to get to its boiling point divided by the time it took to get to this point, and the total energy expended, in this case the kettles's power rating.
The following are the answers to the different questions:
<span>The four rows of data below show the boiling points for a solution with no solute, sucrose (C12H22O11), sodium chloride (NaCl), and calcium chloride (CaCl2) (not in that order). Which boiling point corresponds to calcium chloride?
A. 101.53° C
Which of the following solutions will have the lowest freezing point?
D. 1.0 mol/kg magnesium fluoride (MgF2)
Which of the following compounds will be most effective in melting the ice on the roads when the air temperature is below zero?
A. sodium iodide (NaI)
Four different solutions have the following vapor pressures at 100°C. Which solution will have the greatest boiling point?
B. 96.3 kPa
Four different solutions have the following boiling points. Which boiling point corresponds to a solution with the lowest freezing point?
D. 108.1°C</span>