answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kotegsom [21]
2 years ago
13

Caffeine (C_8H_10N_4O_2) is a weak base with a K_b value of 4 times 10^-4. The pH of a 0.01 M solution of caffeine is in the ran

ge of: a. 2-3 b. 5-6 c. 7-8 d. 9-10 e. 11-12
Chemistry
1 answer:
docker41 [41]2 years ago
3 0

Answer:

The pH of the solution lies from 11 to 12.Hence, option e is correct.

Explanation:

The value of K_b for caffine = 4\times 10^{-4}

CafOH(aq)\rightleftharpoons Caf(aq)+OH^-(aq)

Initial

   0           0.01 M       0

AT equilibrium:

  x          (0.01 -x)M      x

K_b=\frac{x(0.01-x)}{(x)}

4\times 10^{-4}=\frac{x(0.01-x)}{(x)}

Solving for x:

x = 0.0096 M

The pOH of the solution is given by :

pOH=-\log[OH^-}

pOH=-\log[x]

pOH=-\log[0.0096]

pOH = 2.02

pH= 14 - pOH = 14 - 2.02 = 11.98

The pH of the solution lies from 11 to 12.

You might be interested in
Consider the equation: 2NO2(g) N2O4(g). Using ONLY the information given by the equation which of the following changes would in
Reika [66]
I believe the correct answer is the first option. To increase the molar concentration of the product N2O4, you should increase the pressure of the system. You cannot determine the effect of changing the temperature since we cannot tell whether it is an endothermic or an exothermic reaction. Also, decreasing the number of NO2 would not increase the product rather it would shift the equilibrium to the left forming more reactants. The only parameter we can change would be the pressure. And, since NO2 takes up more space than the product increasing the pressure would allow the reactant to collide more forming the product.
7 0
2 years ago
Read 2 more answers
4.82 g of an unknown metal is heated to 115.0∘C and then placed in 35 mL of water at 28.7∘C, which then heats up to 34.5∘C. What
nikitadnepr [17]

<u>Answer:</u> The specific heat of metal is 2.34 J/g°C

<u>Explanation:</u>

To calculate the mass of water, we use the equation:

\text{Density of substance}=\frac{\text{Mass of substance}}{\text{Volume of substance}}

Density of water = 1 g/mL

Volume of water = 35 mL

Putting values in above equation, we get:

1g/mL=\frac{\text{Mass of water}}{35mL}\\\\\text{Mass of water}=(1g/mL\times 35mL)=35g

When metal is dipped in water, the amount of heat released by metal will be equal to the amount of heat absorbed by water.

Heat_{\text{absorbed}}=Heat_{\text{released}}

The equation used to calculate heat released or absorbed follows:

Q=m\times c\times \Delta T=m\times c\times (T_{final}-T_{initial})

m_1\times c_1\times (T_{final}-T_1)=-[m_2\times c_2\times (T_{final}-T_2)]      ......(1)

where,

q = heat absorbed or released

m_1 = mass of metal = 4.82 g

m_2 = mass of water = 35 g

T_{final} = final temperature = 34.5°C

T_1 = initial temperature of metal = 115°C

T_2 = initial temperature of water = 28.7°C

c_1 = specific heat of metal = ?

c_2 = specific heat of water = 4.186 J/g°C

Putting values in equation 1, we get:

4.82\times c_1\times (34.5-110)=-[35\times 4.186\times (34.5-28.7)]

c_1=2.34J/g^oC

Hence, the specific heat of metal is 2.34 J/g°C

4 0
2 years ago
How many moles of gas Does it take to occupy 520 mL at a pressure of 400 torr and a temperature of 340 k
Ann [662]
Answer would be B. I provided work on an image attached. Message me if u have any other questions on how to do it

6 0
2 years ago
Which of the compounds above are strong enough acids to react almost completely with a hydroxide ion (pka of h2o = 15.74) or wit
luda_lava [24]

The compounds can react with OH⁻ and HCO₃⁻ only C₅H₆N pyridinium

<h3><em>Further explanation </em></h3>

In an acid-base reaction, it can be determined whether or not a reaction occurs by knowing the value of pKa or Ka from acid and conjugate acid (acid from the reaction)

Acids and bases according to Bronsted-Lowry

Acid = donor (donor) proton (H + ion)

Base = proton (receiver) acceptor (H + ion)

If the acid gives (H +), then the remaining acid is a conjugate base because it accepts protons. Conversely, if a base receives (H +), then the base formed can release protons and is called the conjugate acid from the original base.

From this, it can be seen whether the acid in the product can give its proton to a base (or acid which has a lower Ka value) so that the reaction can go to the right to produce the product.

The step that needs to be done is to know the pKa value of the two acids (one on the left side and one on the right side of the arrow), then just determine the value of the equilibrium constant

Can be formulated:

K acid-base reaction = Ka acid on the left : K acid on the right.

or:

pK = acid pKa on the left - pKa acid on the right

K = equilibrium constant for acid-base reactions

pK = -log K;

K~=~10^{-pK}

K value> 1 indicates the reaction can take place, or the position of equilibrium to the right.

There is some data that we need to complete from the problem above, which is the pKa value of some compounds that will react, namely:

pyridinium pKa = 5.25

acetone pKa = 19.3

butan-2-one pKa = 19

Let's look at the K value of each possible reaction:

pka H₂O = 15.74, pka of H₂CO₃ = 6.37)

  • 1. C₅H₆N pyridinium

* with OH⁻

C₅H₆N + OH- ---> C₅H₅N- + H₂O

pK = pKa pyridinium - pKa H₂O

pK = 5.25 - 15.74

pK = -10.49

K~=~10^{4.9}

K values> 1 indicate the reaction can take place

* with HCO3⁻

C₅H₆N + HCO₃⁻-- ---> C₅H₅N⁻ + H₂CO₃

pK = 5.25 - 6.37

pK = -1.12

K`=~10^{1.12]

Reaction can take place

  • 2. Acetone C₃H₆O

* with OH-

C₃H₆O + OH⁻ ---> C₃H₅O- + H₂O

pK = 19.3 - 15.74

pK = 3.56

K~=~10^{ -3.56}

Reaction does not happen

* with HCO₃-

C₃H₆O + HCO₃⁻ ----> C₃H₅O⁻ + H₂CO₃

pK = 19.3 - 6.37

pK = 12.93

K`=~10 ^{-12.93}

Reaction does not happen

  • 3. butan-2-one C₄H₇O

* with OH-

C₄H₇O + OH- ---> C₄H₆O- + H₂O

pK = 19 - 15.74

pK = 3.26

K~=~10^{-3.26}

Reaction does not happen

* with HCO₃⁻

C₄H₇O + HCO₃⁻ ---> C₄H₆O⁻ + H₂CO₃

pK = 19 - 6.37

pK = 12.63

K~=~ 10^{-12.63}

Reaction does not happen

So that can react with OH⁻ and HCO₃⁻ only C₅H₆N pyridinium

<h3><em>Learn more </em></h3>

the lowest ph

brainly.com/question/9875355

the concentrations at equilibrium.

brainly.com/question/8918040

the ph of a solution

brainly.com/question/9560687

Keywords : acid base reaction, the equilibrium constant

5 0
2 years ago
Read 2 more answers
Which graphic below shows the correct orientation of each water molecule when it is near the cl- ion in the aqueous solution?
andrew-mc [135]
The question is missing the graphics required to answer which I have attached as an image.

There are four different representations of the orientation of water molecules around chloride anion. Let's first analyze the water molecule.

We have H-O-H as the structure of water. The oxygen atom is more electronegative than the hydrogen atoms, which results in a partial positive charge on the hydrogen atoms and a partial negative charge on the oxygen atom.

The chloride anion is a negative charge. Therefore, the water molecules should orient themselves with the hydrogen atoms facing the chlorine atom as the partial positive charge on the hydrogen atoms will be attracted to the negative charge of the chlorine atom.

The correct representation is shown in graph 3 which shows all hydrogen atoms facing the chlorine anion.

8 0
2 years ago
Other questions:
  • 10.0 mL of a 0.100 mol L–1 solution of a metal ion M2+ is mixed with 10.0 mL of a 0.100 mol L–1 solution of a substance L. The f
    9·2 answers
  • A student titrates 10.00 milliliters of hydrochloric acid of unknown molarity with 1.000 m naoh. it takes 21.17 milliliters of b
    11·1 answer
  • What type of star has an absolute brightness of 1 and a surface temperature around 7,500 °C?
    10·2 answers
  • Which of the following solution is more dilute and explain why?a)1M b)2M c)0.1M or d)0.009M
    12·1 answer
  • Which compound exhibits both cis trans and optical isomerism? A: CH3CH=CHCH2CH3B: CH3CHBrCH=CH2C: CH3CBr=CBrCH3D CH3CH2CHBrCH=CH
    7·1 answer
  • A chemical compound mixture of carbon and one or more elements from the halogen series of elements is known as ____.
    6·1 answer
  • Ammonia NH3 may react with oxygen to form nitrogen gas and water.4NH3 (aq) + 3O2 (g) \rightarrow 2 N2 (g) + 6H2O (l)If 2.15g of
    5·1 answer
  • Consider the following hypothetical reaction: 2 P + Q → 2 R + S The following mechanism is proposed for this reaction: P + P Q
    11·1 answer
  • The solubility of KCl is 3.7 M at 20 °C. Two beakers each contain 100. mL of saturated KCl solution: 100. mL of 4.0 M HCl is add
    6·2 answers
  • 4. Which of the following process is NOT part of wool extraction?
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!