answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Aleks [24]
2 years ago
15

Pipe (2) is supported by a pin at bracket C and by tie rod (1). The structure supports a load P at pin B. Tie rod (1) has a diam

eter of 12 mm and an allowable normal stress of 110 MPa. Pipe (2) has an outside diameter of 48 mm, a wall thickness of 5 mm, and an allowable normal stress of 65 MPa. Assume x1Determine the maximum load Pmax that can be supported by the structure without exceeding either allowable normal stress.
Engineering
1 answer:
Galina-37 [17]2 years ago
8 0

Answer:

P_max = 25204 N

Explanation:

Given:

- Rod 1 : Diameter D = 12 mm , stress_1 = 110 MPa

- Rod 2: OD = 48 mm , thickness t = 5 mm , stress_2 = 65 MPa

- x_1 = 3.5 mm ; x_2 = 2.1 m ; y_1 = 3.7 m

Find:

- Maximum Force P_max that this structure can support.

Solution:

- We will investigate the maximum load that each Rod can bear by computing the normal stress due to applied force and the geometry of the structure.

- The two components of force P normal to rods are:

               Rod 1 : P*cos(Q)  

               Rod 2: - P*sin(Q)

where Q: angle subtended between x_1 and Rod 1 @ A. Hence,

               Q = arctan ( y_1 / x_1)

               Q = arctan (3.7 / 2.1 ) = 60.422 degrees.

- The normal stress in each Rod due to normal force P are:

               Rod 1 : stress_1 = P*cos(Q)  / A_1

               Rod 2: stress_2 = - P*sin(Q)  / A_2

- The cross sectional Area of both rods are A_1 and A_2:

               A_1 = pi*D^2 / 4

               A_2 = pi*(OD^2 - ID^2) / 4

- The maximum force for the given allowable stresses are:

               Rod 1: P_max =  stress_1 * A_1 / cos(Q)

                          P_max = (110*10^6)*pi*0.012^2 / 4*cos(60.422)

                          P_max = 25203.61848 N

               Rod 2: P_max =  stress_2 * A_2 / sin(Q)

                          P_max = (65*10^6)*pi*(0.048^2 - 0.038^2) / 4*sin(60.422)

                          P_max = 50483.4 N

- The maximum force that the structure can with-stand is governed by the member of the structure that fails first. In our case Rod 1 with P_max = 25204 N.

             

You might be interested in
The electrical energy used by an air conditioner for 2 minutes is 180 kJ. Calculate the power of this air conditioner in the fol
ELEN [110]

Answer:

I hope it is correct.....

5 0
2 years ago
5. Which of these materials in a shop contain metals and toxins and can pollute the environment? A) Antifreeze B) Solvents C) Ba
Elza [17]
As a multiple choice the only correct answer is D
3 0
2 years ago
Read 2 more answers
A cylindrical drum (2 ft. dia ,3 ft height) is filled with a fluid whose density is 40 lb/ft^3. Determine (a. the total volume o
Ksivusya [100]

Answer:

a)V=9.42\ ft^3

b)Mass in lb = 376.8 lb

Mass in slug = 11.71 slug

c)v=0.025\ ft^3/lb

d)w=1276 \ lb/ft.s^2

Explanation:

Given that

d= 2 ft

r= 1 ft

h= 3 ft

Density

\rho = 40\ lb/ft^3

a)

We know that volume V given as

V=\pi r^2 h

V=\pi \times 1^2\times 3

V=9.42\ ft^3

b)

Mass = Density x volume

mass =40\times 9.42\ lb

mass= 376.8 lb

We know that

1 lb = 0.031 slug

So 376.8 lb= 11.71 slug

Mass in lb = 376.8 lb

Mass in slug = 11.71 slug

c)

we know that specific volume(v) is the inverse of density.

v=\dfrac{1}{\rho}\ ft^3/lb

v=\dfrac{1}{40}\ ft^3/lb

v=0.025\ ft^3/lb

d)

Specific weight(w) is the product of density and the gravity(g).

w= ρ X g

w = 40 x 31.9

w=1276 \ lb/ft.s^2

8 0
2 years ago
An electric field is expressed in rectangular coordinates by E = 6x2ax + 6y ay +4az V/m.Find:a) VMN if point M and N are specifi
Fittoniya [83]

Answer:

a.) -147V

b.) -120V

c.) 51V

Explanation:

a.) Equation for potential difference is the integral of the electrical field from a to b for the voltage V_ba = V(b)-V(a).

b.) The problem becomes easier to solve if you draw out the circuit. Since potential at Q is 0, then Q is at ground. So voltage across V_MQ is the same as potential at V_M.

c.) Same process as part b. Draw out the circuit and you'll see that the potential a point V_N is the same as the voltage across V_NP added with the 2V from the other box.

Honestly, these things take practice to get used to. It's really hard to explain this.

3 0
2 years ago
At an impaired driver checkpoint, the time required to conduct the impairment test varies (according to an exponential distribut
professor190 [17]

Answer:

Option (d) 2 min/veh

Explanation:

Data provided in the question:

Average time required = 60 seconds

Therefore,

The maximum capacity that can be accommodated on the system, μ = 60 veh/hr

Average Arrival rate, λ = 30 vehicles per hour

Now,

The average time spent by the vehicle is given as

⇒ \frac{1}{\mu(1-\frac{\lambda}{\mu})}

thus,

on substituting the respective values, we get

Average time spent by the vehicle = \frac{1}{60(1-\frac{30}{60})}

or

Average time spent by the vehicle = \frac{1}{60(1-0.5)}

or

Average time spent by the vehicle = \frac{1}{60(0.5)}

or

Average time spent by the vehicle = \frac{1}{30} hr/veh

or

Average time spent by the vehicle = \frac{1}{30}\times60 min/veh

[ 1 hour = 60 minutes]

thus,

Average time spent by the vehicle = 2 min/veh

Hence,

Option (d) 2 min/veh

7 0
2 years ago
Other questions:
  • Consider a plane composite wall that is composed of two materials of thermal conductivities kA 0.1 W/mK and kB 0.04 W/mK and thi
    14·1 answer
  • At a certain college, 30% of the students major in engineering, 20% play club sports, and 10% both major in engineering and play
    14·1 answer
  • Air is compressed adiabatically from p1 1 bar, T1 300 K to p2 15 bar, v2 0.1227 m3 /kg. The air is then cooled at constant volum
    13·1 answer
  • The small washer is sliding down the cord OA. When it is at the midpoint, its speed is 28 m/s and its acceleration is 7 m/s 2 .
    13·1 answer
  • 1. A spur gear made of bronze drives a mid steel pinion with angular velocity ratio of 13 /2 : 1. Thepressure angle is 14 1/2° .
    12·1 answer
  • The rigid beam is supported by a pin at C and an A992 steel guy wire AB of length 6 ft. If the wire has a diameter of 0.2 in., d
    14·1 answer
  • Solid spherical particles having a diameter of 0.090 mm and a density of 2002 kg/m3 are settling in a solution of water at 26.7C
    8·1 answer
  • Discuss your interpretation of the confidence-precision trade-off, and provide a few examples of how you might make a choice in
    14·1 answer
  • What ratio between differential gain and common-mode gain is called​
    9·1 answer
  • How does Accenture generate value for clients through Agile and DevOps?
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!